911 research outputs found
Nonlinear elastic-viscoplastic constitutive equations for aging facial tissues
This paper reports on the initial stages of a project to simulate the nonlinear mechanical behavior of an aging human face. A cross-section of the facial structure is considered to consist of a multilayered composite of tissues with differing mechanical behavior. The constitutive properties of these tissues are incorporated into a finite element model of the three-dimensional facial geometry. Relatively short time (elastic-viscoplastic) behavior is governed by equations previously developed which are consistent with mechanical tests. The long time response is controlled by the aging elastic components of the tissues. An aging function is introduced which, in a simplified manner, captures the observed loss of stiffness of these aging elastic components due to the history of straining as well as other physiological and environmental influences. Calculations have been performed for 30years of exposure to gravitational forces. Progressive gravimetric soft tissue descent is simulated, which is regarded as the main indication of facial aging. Results are presented for the deformations and stress distributions in the layers of the soft tissue
Free-Boundary Dynamics in Elasto-plastic Amorphous Solids: The Circular Hole Problem
We develop an athermal shear-transformation-zone (STZ) theory of plastic
deformation in spatially inhomogeneous, amorphous solids. Our ultimate goal is
to describe the dynamics of the boundaries of voids or cracks in such systems
when they are subjected to remote, time-dependent tractions. The theory is
illustrated here for the case of a circular hole in an infinite two-dimensional
plate, a highly symmetric situation that allows us to solve much of the problem
analytically. In spite of its special symmetry, this example contains many
general features of systems in which stress is concentrated near free
boundaries and deforms them irreversibly. We depart from conventional
treatments of such problems in two ways. First, the STZ analysis allows us to
keep track of spatially heterogeneous, internal state variables such as the
effective disorder temperature, which determines plastic response to subsequent
loading. Second, we subject the system to stress pulses of finite duration, and
therefore are able to observe elasto-plastic response during both loading and
unloading. We compute the final deformations and residual stresses produced by
these stress pulses. Looking toward more general applications of these results,
we examine the possibility of constructing a boundary-layer theory that might
be useful in less symmetric situations.Comment: 30 pages (preprint format), 9 figure
Recommended from our members
Treatment of anisotropic damage development within a scalar damage formulation
This paper is concerned with describing a damage mechanics formulation which provides for non-isotropic effects using a scalar damage variable. An investigation has been in progress for establishing the constitutive behavior of rock salt at long times and low to moderate confining pressures in relation to the possible use of excavated rooms in rock salt formations as repositories for nuclear waste. An important consideration is the effect of damage manifested principally by the formation of shear induced wing cracks which have a stress dependent orientation. The analytical formulation utilizes a scalar damage parameter, but is capable of indicating the non- isotropic dependence of inelastic straining on the stress state and the confining pressure. Also, the equations indicate the possibility of volumetric expansions leading to the onset of tertiary creep and eventually rupture if the damage variable reaches a critical value
N=2 Supersymmetric Scalar-Tensor Couplings
We determine the general coupling of a system of scalars and antisymmetric
tensors, with at most two derivatives and undeformed gauge transformations, for
both rigid and local N=2 supersymmetry in four-dimensional spacetime. Our
results cover interactions of hyper, tensor and double-tensor multiplets and
apply among others to Calabi-Yau threefold compactifications of Type II
supergravities. As an example, we give the complete Lagrangian and
supersymmetry transformation rules of the double-tensor multiplet dual to the
universal hypermultiplet.Comment: 23 pages, LaTeX2e with amsmath.sty; v2: corrected typos and added
referenc
Effect of propranolol on facial processing in autism spectrum disorder
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social interaction deficits, communication impairments, and restricted, repetitive behaviors. ASD, with estimates of incidence as high as 1 in 88 individuals, has a largely unknown etiology. Pharmacological intervention is currently being explored to improve symptoms of ASD, including those in the social domain. Social interaction deficits in this population may include facial processing abnormalities, such as reduced eye contact, and increased fixation on less socially-salient facial regions, such as the mouth. However, there is variability in the degree of these deficits in the current literature. Additionally, it has been previously hypothesized that stress mediates poor facial processing in individuals with ASD. This pilot study examines the effect of propranolol, a nonselective beta-adrenergic antagonist anxiolytic, on facial processing in individuals with ASD and typically developing controls
Recommended from our members
Constitutive representation of damage development and healing in WIPP salt
There has been considerable interest in characterizing and modeling the constitutive behavior of rock salt with particular reference to long-term creep and creep failure. The interest is motivated by the projected use of excavated rooms in salt rock formations as repositories for nuclear waste. It is presumed that closure of those rooms by creep ultimately would encapsulate the waste material, resulting in its effective isolation. A continuum mechanics approach for treating damage healing is formulated as part of a constitutive model for describing coupled creep, fracture, and healing in rock salt. Formulation of the healing term is, described and the constitutive model is evaluated against experimental data of rock salt from the Waste Isolation Pilot Plant (WIPP) site. The results indicate that healing anistropy in WIPP salt can be modeled with an appropriate power-conjugate equivalent stress, kinetic equation, and evolution equation for damage healing
Formation of the internal structure of solids under severe action
On the example of a particular problem, the theory of vacancies, a new form
of kinetic equations symmetrically incorporation the internal and free energies
has been derived. The dynamical nature of irreversible phenomena at formation
and motion of defects (dislocations) has been analyzed by a computer
experiment. The obtained particular results are extended into a thermodynamic
identity involving the law of conservation of energy at interaction with an
environment (the 1st law of thermodynamics) and the law of energy
transformation into internal degree of freedom (relaxation). The identity is
compared with the analogous Jarzynski identity. The approach is illustrated by
simulation of processes during severe plastic deformation, the Rybin kinetic
equation for this case has been derived.Comment: 9 pages, 5 figure
String loop corrections to the universal hypermultiplet
We study loop corrections to the universal dilaton supermultiplet for type
IIA strings compactified on Calabi-Yau threefolds. We show that the
corresponding quaternionic kinetic terms receive non-trivial one-loop
contributions proportional to the Euler number of the Calabi-Yau manifold,
while the higher-loop corrections can be absorbed by field redefinitions. The
corrected metric is no longer Kahler. Our analysis implies in particular that
the Calabi-Yau volume is renormalized by loop effects which are present even in
higher orders, while there are also one-loop corrections to the Bianchi
identities for the NS and RR field strengths.Comment: 30 pages, harvmac, 1 figure. v2: minor typos corrected. Version to
appear in Classical and Quantum Gravit
Using an extended ICAP-based coding guide as a framework for the analysis of classroom observations
Available online 13 April 2023A coding guide based on the Interactive, Constructive, Active, Passive (ICAP) theory was developed and used to analyze the transcripts from filmed classroom observations. The analysis focused on the lesson tasks used by the 20 participating teachers to promote student cognitive engagement and the links between these tasks and student learning. The results showed that a) only 30% of the lesson tasks were assigned the Constructive and Interactive codes, and b) there were important teacher differences. About half of the teachers provided no or very few opportunities for Constructive or Interactive student cognitive engagement in their lessons.Stella Vosniadou, Michael J. Lawson, Erin Bodner, Helen Stephenson, David Jeffries, I Gusti Ngurah Darmawa
- …