63 research outputs found
A learning robot for cognitive camera control in minimally invasive surgery
Background!#!We demonstrate the first self-learning, context-sensitive, autonomous camera-guiding robot applicable to minimally invasive surgery. The majority of surgical robots nowadays are telemanipulators without autonomous capabilities. Autonomous systems have been developed for laparoscopic camera guidance, however following simple rules and not adapting their behavior to specific tasks, procedures, or surgeons.!##!Methods!#!The herein presented methodology allows different robot kinematics to perceive their environment, interpret it according to a knowledge base and perform context-aware actions. For training, twenty operations were conducted with human camera guidance by a single surgeon. Subsequently, we experimentally evaluated the cognitive robotic camera control. A VIKY EP system and a KUKA LWR 4 robot were trained on data from manual camera guidance after completion of the surgeon's learning curve. Second, only data from VIKY EP were used to train the LWR and finally data from training with the LWR were used to re-train the LWR.!##!Results!#!The duration of each operation decreased with the robot's increasing experience from 1704 s ± 244 s to 1406 s ± 112 s, and 1197 s. Camera guidance quality (good/neutral/poor) improved from 38.6/53.4/7.9 to 49.4/46.3/4.1% and 56.2/41.0/2.8%.!##!Conclusions!#!The cognitive camera robot improved its performance with experience, laying the foundation for a new generation of cognitive surgical robots that adapt to a surgeon's needs
2018 Robotic Scene Segmentation Challenge
In 2015 we began a sub-challenge at the EndoVis workshop at MICCAI in Munich using endoscope images of ex-vivo tissue with automatically generated annotations from robot forward kinematics and instrument CAD models. However, the limited background variation and simple motion rendered the dataset uninformative in learning about which techniques would be suitable for segmentation in real surgery. In 2017, at the same workshop in Quebec we introduced the robotic instrument segmentation dataset with 10 teams participating in the challenge to perform binary, articulating parts and type segmentation of da Vinci instruments. This challenge included realistic instrument motion and more complex porcine tissue as background and was widely addressed with modifications on U-Nets and other popular CNN architectures. In 2018 we added to the complexity by introducing a set of anatomical objects and medical devices to the segmented classes. To avoid over-complicating the challenge, we continued with porcine data which is dramatically simpler than human tissue due to the lack of fatty tissue occluding many organs
Why is the Winner the Best?
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multicenter study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and post-processing (66%). The “typical” lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work
Why is the winner the best?
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multicenter study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and post-processing (66%). The 'typical' lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work
Entwicklung eines sensor- und modellgestĂĽtzten Trainingssystems fĂĽr die Minimal Invasive Chirurgie
- …