155 research outputs found

    Lagrangian Structure Functions in Turbulence: A Quantitative Comparison between Experiment and Direct Numerical Simulation

    Get PDF
    A detailed comparison between data from experimental measurements and numerical simulations of Lagrangian velocity structure functions in turbulence is presented. By integrating information from experiments and numerics, a quantitative understanding of the velocity scaling properties over a wide range of time scales and Reynolds numbers is achieved. The local scaling properties of the Lagrangian velocity increments for the experimental and numerical data are in good quantitative agreement for all time lags. The degree of intermittency changes when measured close to the Kolmogorov time scales or at larger time lags. This study resolves apparent disagreements between experiment and numerics.Comment: 13 RevTeX pages (2 columns) + 8 figures include

    Experimental Lagrangian Acceleration Probability Density Function Measurement

    Get PDF
    We report experimental results on the acceleration component probability distribution function at Rλ=690R_\lambda = 690 to probabilities of less than 10710^{-7}. This is an improvement of more than an order of magnitude over past measurements and allows us to conclude that the fourth moment converges and the flatness is approximately 55. We compare our probability distribution to those predicted by several models inspired by non-extensive statistical mechanics. We also look at acceleration component probability distributions conditioned on a velocity component for conditioning velocities as high as 3 times the standard deviation and find them to be highly non-Gaussian.Comment: submitted for the special issue of Physica D: "Anomalous Distributions" 11 pages, 6 figures revised version: light modifications of the figures and the tex

    Ergodic and non-ergodic clustering of inertial particles

    Full text link
    We compute the fractal dimension of clusters of inertial particles in mixing flows at finite values of Kubo (Ku) and Stokes (St) numbers, by a new series expansion in Ku. At small St, the theory includes clustering by Maxey's non-ergodic 'centrifuge' effect. In the limit of St to infinity and Ku to zero (so that Ku^2 St remains finite) it explains clustering in terms of ergodic 'multiplicative amplification'. In this limit, the theory is consistent with the asymptotic perturbation series in [Duncan et al., Phys. Rev. Lett. 95 (2005) 240602]. The new theory allows to analyse how the two clustering mechanisms compete at finite values of St and Ku. For particles suspended in two-dimensional random Gaussian incompressible flows, the theory yields excellent results for Ku < 0.2 for arbitrary values of St; the ergodic mechanism is found to contribute significantly unless St is very small. For higher values of Ku the new series is likely to require resummation. But numerical simulations show that for Ku ~ St ~ 1 too, ergodic 'multiplicative amplification' makes a substantial contribution to the observed clustering.Comment: 4 pages, 2 figure

    Zig-zag instability of an Ising wall in liquid crystals

    Full text link
    We present a theoretical explanation for the interfacial zigzag instability that appears in anisotropic systems. Such an instability has been experimentally highlighted for an Ising wall formed in a nematic liquid crystal cell under homeotropic anchoring conditions. From an envelope equation, relevant close to the Freedericksz transition, we have derived an asymptotic equation describing the interface dynamics in the vicinity of its bifurcation. The asymptotic limit used accounts for a strong difference between two of the elastic constants. The model is characterized by a conservative order parameter which satisfies a Cahn-Hilliard equation. It provides a good qualitative understanding of the experiments.Comment: 4 pagess, 4 figures, lette

    Doppler Effect of Nonlinear Waves and Superspirals in Oscillatory Media

    Full text link
    Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example, where waves originate from a source exhibiting a back-and-forth movement in radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves (``superspiral''). Using the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonous growth or decay as well as saturation of these modulations away from the source depending on the perturbation frequency. Our findings allow a consistent interpretation of recent experimental observations concerning superspirals and their decay to spatio-temporal chaos.Comment: 4 pages, 4 figure

    Quasiperiodic Tip Splitting in Directional Solidification

    Full text link
    We report experimental results on the tip splitting dynamics of seaweed growth in directional solidification of succinonitrile alloys with poly(ethylene oxide) or acetone as solutes. The seaweed or dense branching morphology was selected by solidifying grains which are oriented close to the {111} plane. Despite the random appearance of the growth, a quasiperiodic tip splitting morphology was observed in which the tip alternately splits to the left and to the right. The tip splitting frequency f was found to be related to the growth velocity V as a power law f V^{1.5}. This finding is consistent with the predictions of a tip splitting model that is also presented. Small anisotropies are shown to lead to different kinds of seaweed morphologies.Comment: 4 pages, 7 figures, submitted to Physical Review Letter

    Double-component convection due to different boundary conditions in an infinite slot diversely oriented to the gravity

    Full text link
    Onset of small-amplitude oscillatory and both small- and finite-amplitude steady double-component convection arising due to component different boundary conditions in an infinite slot is studied for various slot orientations to the gravity. The main focus is on two compensating background gradients of the components. The physical mechanisms underlying steady and oscillatory convection are analyzed from the perspective of a universally consistent understanding of the effects of different boundary conditions.Comment: V2: Submitted to and published in Annals of Physics. 59 manuscript pages, 15 figures (occupying 21 pages). The full abstract is on the first page. Nonessential modifications/enhancements in the presentation (more compact presentation of the text and figure data, some style improvements, etc.

    Electrophysiological Characterization of Human Atria: The understated Role of Temperature

    Full text link
    Ambient temperature has a profound influence on cellular electrophysiology through direct control over the gating mechanisms of different ion channels. In the heart, low temperature is known to favor prolongation of the action potential. However, not much is known about the influence of temperature on other important characterization parameters such as the resting membrane potential (RMP), excitability, morphology and characteristics of the action potential (AP), restitution properties, conduction velocity (CV) of signal propagation, etc. Here we present the first, detailed, systematic in silico study of the electrophysiological characterization of cardiomyocytes from different regions of the normal human atria, based on the effects of ambient temperature (5−50°C). We observe that RMP decreases with increasing temperature. At ~ 48°C, the cells lose their excitability. Our studies show that different parts of the atria react differently to the same changes in temperature. In tissue simulations a drop in temperature correlated positively with a decrease in CV, but the decrease was region-dependent, as expected. In this article we show how this heterogeneous response can provide an explanation for the development of a proarrhythmic substrate during mild hypothermia. We use the above concept to propose a treatment strategy for atrial fibrillation that involves severe hypothermia in specific regions of the heart for a duration of only ~ 200 ms. © Copyright © 2021 Majumder, Mohamed Nazer, Panfilov, Bodenschatz and Wang.This work was supported by the Max Planck Society and the German Center for Cardiovascular Research. Research at Sechenov University was financed by the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers Digital biodesign and personalized healthcare No. 075-15-2020-926

    Whirling Hexagons and Defect Chaos in Hexagonal Non-Boussinesq Convection

    Full text link
    We study hexagon patterns in non-Boussinesq convection of a thin rotating layer of water. For realistic parameters and boundary conditions we identify various linear instabilities of the pattern. We focus on the dynamics arising from an oscillatory side-band instability that leads to a spatially disordered chaotic state characterized by oscillating (whirling) hexagons. Using triangulation we obtain the distribution functions for the number of pentagonal and heptagonal convection cells. In contrast to the results found for defect chaos in the complex Ginzburg-Landau equation and in inclined-layer convection, the distribution functions can show deviations from a squared Poisson distribution that suggest non-trivial correlations between the defects.Comment: 4 mpg-movies are available at http://www.esam.northwestern.edu/~riecke/lit/lit.html submitted to New J. Physic

    Path lengths in turbulence

    Full text link
    By tracking tracer particles at high speeds and for long times, we study the geometric statistics of Lagrangian trajectories in an intensely turbulent laboratory flow. In particular, we consider the distinction between the displacement of particles from their initial positions and the total distance they travel. The difference of these two quantities shows power-law scaling in the inertial range. By comparing them with simulations of a chaotic but non-turbulent flow and a Lagrangian Stochastic model, we suggest that our results are a signature of turbulence.Comment: accepted for publication in Journal of Statistical Physic
    corecore