170 research outputs found

    Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner

    No full text
    The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia

    ЛСгочная гипСртСнзия ΠΏΡ€ΠΈ диастоличСской дисфункции Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠ° Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ ΠΊΠ°Ρ€Π΄ΠΈΠΎΠΌΠΈΠΎΠΏΠ°Ρ‚ΠΈΠ΅ΠΉ

    Get PDF
    На основании Π΄Π°Π½Π½Ρ‹Ρ… эхокардиографичСского исслСдования выявлСна взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠΉ Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠΈ ΠΈ Ρ‚ΡΠΆΠ΅ΡΡ‚ΡŒΡŽ диастоличСской дисфункции Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠ° Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ ΠΊΠ°Ρ€Π΄ΠΈΠΎΠΌΠΈΠΎΠΏΠ°Ρ‚ΠΈΠ΅ΠΉ. Показано, Ρ‡Ρ‚ΠΎ рСстриктиноС Π½Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠ° Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π² основном ΠΏΡ€ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΉ Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠΉ Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠΈ.The findings of echocardiography were used to reveal interrelation between the degree of pulmonary hypertension and severity of diastolic dysfunction of the left ventricle in patients with ischemic cardiomyopathy. Restrictive filling of the left ventricle is shown to be observed in marked pulmonary hypertension

    Transcriptional profiling of macaque microglia reveals an evolutionary preserved gene expression program

    Get PDF
    Microglia are tissue-resident macrophages of the central nervous system (CNS), and important for CNS development and homeostasis. In the adult CNS, microglia monitor environmental changes and react to tissue damage, cellular debris, and pathogens. Here, we present a gene expression profile of purified microglia isolated from the rhesus macaque, a non-human primate, that consists of 666 transcripts. The macaque microglia transcriptome was intersected with the transcriptional programs of microglia from mouse, zebrafish, and human CNS tissues, to determine (dis)similarities. This revealed an extensive overlap of 342 genes between the transcriptional profile of macaque and human microglia, and showed that the gene expression profile of zebrafish is most distant when compared to other species. Furthermore, an evolutionair core based on the overlapping gene expression signature from all four species was identified. This study presents a macaque microglia transcriptomics profile, and identifies a gene expression program in microglia that is preserved across species, underscoring their CNS-tailored tissue macrophage functions as innate immune cells with CNS-surveilling properties

    Distinct amyloid-beta and tau-associated microglia profiles in Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by abnormal extracellular aggregates of amyloid-beta and intraneuronal hyperphosphorylated tau tangles and neuropil threads. Microglia, the tissue-resident macrophages of the central nervous system (CNS), are important for CNS homeostasis and implicated in AD pathology. In amyloid mouse models, a phagocytic/activated microglia phenotype has been identified. How increasing levels of amyloid-beta and tau pathology affect human microglia transcriptional profiles is unknown. Here, we performed snRNAseq on 482,472 nuclei from non-demented control brains and AD brains containing only amyloid-beta plaques or both amyloid-beta plaques and tau pathology. Within the microglia population, distinct expression profiles were identified of which two were AD pathology-associated. The phagocytic/activated AD1-microglia population abundance strongly correlated with tissue amyloid-beta load and localized to amyloid-beta plaques. The AD2-microglia abundance strongly correlated with tissue phospho-tau load and these microglia were more abundant in samples with overt tau pathology. This full characterization of human disease-associated microglia phenotypes provides new insights in the pathophysiological role of microglia in AD and offers new targets for microglia-state-specific therapeutic strategies

    Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE

    Get PDF
    Drainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with experimental autoimmune encephalomyelitis (EAE) and in mouse models with non-inflammatory CNS damage, the type and extent of CNS damage was associated with the frequencies of CNS antigens within the cervical lymph nodes. In addition, CNS antigens drained to the spinal-cord-draining lumbar lymph nodes. In human MS CLN, neuronal antigens were present in pro-inflammatory antigen-presenting cells (APC), whereas the majority of myelin-containing cells were anti-inflammatory. This may reflect a different origin of the cells or different drainage mechanisms. Indeed, neuronal antigen-containing cells in human CLN did not express the lymph node homing receptor CCR7, whereas myelin antigen-containing cells in situ and in vitro did. Nevertheless, CLN from EAE-affected CCR7-deficient mice contained equal amounts of myelin and neuronal antigens as wild-type mice. We conclude that the type and frequencies of CNS antigens within the CLN are determined by the type and extent of CNS damage. Furthermore, the presence of myelin and neuronal antigens in functionally distinct APC populations within MS CLN suggests that differential immune responses can be evoked

    Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction

    Get PDF
    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron–astrocyte, neuron–microglia, and neuron–neuron interaction
    • …
    corecore