1,147 research outputs found

    Ethanol production from brown seaweed using non-conventional yeasts

    Get PDF
    The use of macroalgae (seaweed) as a potential source of biofuels has attracted considerable worldwide interest. Since brown algae, especially the giant kelp, grow very rapidly and contain considerable amounts of polysaccharides, coupled with low lignin content, they represent attractive candidates for bioconversion to ethanol through yeast fermentation processes. In the current study, powdered dried seaweeds (Ascophylum nodosum and Laminaria digitata) were pre-treated with dilute sulphuric acid and hydrolysed with commercially available enzymes to liberate fermentable sugars. Higher sugar concentrations were obtained from L. digitata compared with A. nodosum with glucose and rhamnose being the predominant sugars, respectively, liberated from these seaweeds. Fermentation of the resultant seaweed sugars was performed using two non-conventional yeast strains: Scheffersomyces (Pichia) stipitis and Kluyveromyces marxianus based on their abilities to utilise a wide range of sugars. Although the yields of ethanol were quite low (at around 6 g/L), macroalgal ethanol production was slightly higher using K. marxianus compared with S. stipitis. The results obtained demonstrate the feasibility of obtaining ethanol from brown algae using relatively straightforward bioprocess technology, together with non-conventional yeasts. Conversion efficiency of these non-conventional yeasts could be maximised by operating the fermentation process based on the physiological requirements of the yeasts

    Magnetoresistance Induced by Rare Strong Scatterers in a High Mobility 2DEG

    Get PDF
    We observe a strong negative magnetoresistance at non-quantizing magnetic fields in a high-mobility two-dimensional electron gas (2DEG). This strong negative magnetoresistance consists of a narrow peak around zero magnetic field and a huge magnetoresistance at larger fields. The peak shows parabolic magnetic field dependence and is attributed to the interplay of smooth disorder and rare strong scatterers. We identify the rare strong scatterers as macroscopic defects in the material and determine their density from the peak curvature.Comment: 5 pages, 4 figure

    Two-dimensional tomographic simultaneous multispecies visualization—Part II: Reconstruction accuracy

    Get PDF
    Recently we demonstrated the simultaneous detection of the chemiluminescence of the radicals OH* (310 nm) and CH* (430 nm), as well as the thermal radiation of soot in laminar and turbulent methane/air diffusion flames. As expected, a strong spatial and temporal coupling of OH* and CH* in laminar and moderate turbulent flames was observed. Taking advantage of this coupling, multispecies tomography enables us to quantify the reconstruction quality completely independent of any phantom studies by simply utilizing the reconstructed distribution of both species. This is especially important in turbulent flames, where it is difficult to separate measurement noise from turbulent fluctuations. It is shown that reconstruction methods based on Tikhonov regularization should be preferred over the widely used algebraic reconstruction technique (ART) and multiplicative algebraic reconstruction techniques (MART), especially for high-speed imaging or generally in the limit of low signal-to-noise ratio

    Oxidation of the 1‐naphthyl radical C₁₀H₇• with oxygen: Thermochemistry, kinetics, and possible reaction pathways

    Get PDF
    The reaction of the 1-naphthyl radical C10H7• (A2•) with molecular (3O2) and atomic oxygen, as part of the oxidation reactions of naphthalene, is examined using ab-initio and DFT quantum chemistry calculations. The study focuses on pathways that produce the intermediate final products CO, phenyl and C2H2, which may constitute a repetitive reaction sequence for the successive diminution of six-membered rings also in larger polycyclic aromatic hydrocarbons. The primary attack of 3O2 on the 1-naphthyl radical leads to a peroxy radical C10H7OO• (A2OO•), which undergoes further propagation and/or chain branching reactions. The thermochemistry of intermediates and transition state structures is investigated as well as the identification of all plausible reaction pathways for the A2• + O2 / A2• + O systems. Structures and enthalpies of formation for the involved species are reported along with transition state barriers and reaction pathways. Standard enthalpies of formation are calculated using ab initio (CBS-QB3) and DFT calculations (B3LYP, M06, APFD). The reaction of A2• with 3O2 opens six main consecutive reaction channels with new ones not currently considered in oxidation mechanisms. The reaction paths comprise important exothermic chain branching reactions and the formation of unsaturated oxygenated hydrocarbon intermediates. The primary attack of 3O2 at the A2• radical has a well depth of some 50 kcal mol−1 while the six consecutive channels exhibit energy barriers below the energy of the A2• radical. The kinetic parameters of each path are determined using chemical activation analysis based on the canonical transition state theory calculations. The investigated reactions could serve as part of a comprehensive mechanism for the oxidation of naphthalene. The principal result from this study is that the consecutive reactions of the A2• radical, viz. the channels conducting to a phenyl radical C6H5•, CO2, CO (which oxidized to CO2) and C2H2 are by orders of magnitude faster than the activation of naphthalene by oxygen (A2 + O2 → A2• + HO2)

    Two-Dimensional Tomographic Simultaneous Multi-Species Visualization—Part I: Experimental Methodology and Application to Laminar and Turbulent Flames

    Get PDF
    In recent years, the tomographic visualization of laminar and turbulent flames has received much attention due to the possibility of observing combustion processes on-line and with high temporal resolution. In most cases, either the spectrally non-resolved flame luminescence or the chemiluminescence of a single species is detected and used for the tomographic reconstruction. In this work, we present a novel 2D emission tomographic setup that allows for the simultaneous detection of multiple species (e.g., OH*, CH* and soot but not limited to these) using a single image intensified CCD camera. We demonstrate the simultaneous detection of OH* (310 nm), CH* (430 nm) and soot (750 nm) in laminar methane/air, as well as turbulent methane/air and ethylene/air diffusion flames. As expected, the reconstructed distributions of OH* and CH* in laminar and turbulent flames are highly correlated, which supports the feasibility of tomographic measurements on these kinds of flames and at timescales down to about 1 ms. In addition, the possibilities and limitations of the tomographic approach to distinguish between locally premixed, partially premixed and non-premixed conditions, based on evaluating the local intensity ratio of OH* and CH* is investigated. While the tomographic measurements allow a qualitative classification of the combustion conditions, a quantitative interpretation of instantaneous reconstructed intensities (single shot results) has a much greater uncertainty
    • …
    corecore