805 research outputs found

    Using the Data Modeling Worksheet to Improve Novice Data Modeler Performance

    Get PDF
    This research reports on use and evaluation of the data modeling worksheet as a pedagogical tool for improving a student\u27s ability to learn the extended entity-relationship data modeling methodology. A laboratory experiment using a modified posttest only, control group design compared the performance of two student subject groups. One group used the data modeling worksheet as an integral component of their instruction on database design. A second control group did not use the worksheet, but that group received comparable training in every other respect. Subjects were tasked to develop a data model that represented a textual description of a data modeling problem. The data analysis used a one-way ANOVA to evaluate eight hypotheses, each representing a facet of the data modeling methodology. The results indicate that the data modeling worksheet significantly improved student learning with regard to their ability to identify entities, entity identifier attributes, and ternary relationships

    A Resolved Ring of Debris Dust around the Solar Analog HD 107146

    Get PDF
    We present resolved images of the dust continuum emission from the debris disk around the young (80-200 Myr) solar-type star HD 107146 with CARMA at λ = 1.3 mm and the CSO at λ = 350 Ό. Both images show that the dust emission extends over an approximately 10" diameter region. The high-resolution (3") CARMA image further reveals that the dust is distributed in a partial ring with significant decrease in a flux inward of 97 AU. Two prominent emission peaks appear within the ring separated by ~140° in the position angle. The morphology of the dust emission is suggestive of dust captured into a mean motion resonance, which would imply the presence of a planet at an orbital radius of ~45-75 AU

    Atmospheric phase correction using CARMA-PACS: high angular resolution observations of the FU Orionis star PP 13S*

    Get PDF
    We present 0".15 resolution observations of the 227 GHz continuum emission from the circumstellar disk around the FU Orionis star PP 13S*. The data were obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) Paired Antenna Calibration System (C-PACS), which measures and corrects the atmospheric delay fluctuations on the longest baselines of the array in order to improve the sensitivity and angular resolution of the observations. A description of the C-PACS technique and the data reduction procedures are presented. C-PACS was applied to CARMA observations of PP 13S*, which led to a factor of 1.6 increase in the observed peak flux of the source, a 36% reduction in the noise of the image, and a 52% decrease in the measured size of the source major axis. The calibrated complex visibilities were fitted with a theoretical disk model to constrain the disk surface density. The total disk mass from the best-fit model corresponds to 0.06 M_⊙, which is larger than the median mass of a disk around a classical T Tauri star. The disk is optically thick at a wavelength of 1.3 mm for orbital radii less than 48 AU. At larger radii, the inferred surface density of the PP 13S* disk is an order of magnitude lower than that needed to develop a gravitational instability

    HerMES: the rest-frame UV emission and a lensing model for the z= 6.34 luminous dusty starburst galaxy HFLS3

    Get PDF
    We discuss the rest-frame ultraviolet emission from the starbursting galaxy HFLS3 at a redshift of 6.34. The galaxy was discovered in Herschel/SPIRE data due to its red color in the submillimeter wavelengths from 250 to 500 ÎŒm. Keck/NIRC2 K s -band adaptive optics imaging data showed two potential near-IR counterparts near HFLS3. Previously, the northern galaxy was taken to be in the foreground at z = 2.1, while the southern galaxy was assumed to be HFLS3's near-IR counterpart. The recently acquired Hubble/WFC3 and Advanced Camera for Surveys (ACS) imaging data show conclusively that both optically bright galaxies are in the foreground at z < 6. A new lensing model based on the Hubble imaging data and the millimeter-wave continuum emission yields a magnification factor of 2.2 ± 0.3, with a 95% confidence upper limit on the magnification of 3.5. When corrected for lensing, the instantaneous star formation rate is 1320 M ☉ yr–1, with the 95% confidence lower limit around 830 M ☉ yr–1. The dust and stellar masses of HFLS3 from the same spectral energy distribution (SED) models are at the level of 3 × 108 M ☉ and ~5 × 1010 M ☉, respectively, with large systematic uncertainties on assumptions related to the SED model. With Hubble/WFC3 images, we also find diffuse near-IR emission about 0.5 arcsec (~3 kpc) to the southwest of HFLS3 that remains undetected in the ACS imaging data. The emission has a photometric redshift consistent with either z ~ 6 or a dusty galaxy template at z ~ 2

    A Comprehensive Study of GRB 070125, A Most Energetic Gamma-Ray Burst

    Get PDF
    We present a comprehensive multiwavelength analysis of the bright, long-duration gamma-ray burst GRB 070125, comprised of observations in gamma-ray, X-ray, optical, millimeter, and centimeter wave bands. Simultaneous fits to the optical and X-ray light curves favor a break on day 3.78, which we interpret as the jet break from a collimated outflow. Independent fits to optical and X-ray bands give similar results in the optical bands but shift the jet break to around day 10 in the X-ray light curve. We show that for the physical parameters derived for GRB 070125, inverse Compton scattering effects are important throughout the afterglow evolution. While inverse Compton scattering does not affect radio and optical bands, it may be a promising candidate to delay the jet break in the X-ray band. Radio light curves show rapid flux variations, which are interpreted as due to interstellar scintillation and used to derive an upper limit of 2.4 × 10 17 cm on the radius of the fireball in the lateral expansion phase of the jet. Radio light curves and spectra suggest a high synchrotron self-absorption frequency indicative of the afterglow shock wave moving in a dense medium. Our broadband modeling favors a constant density profile for the circumburst medium over a windlike profile (R -2). However, keeping in mind the uncertainty of the parameters, it is difficult to unambiguously distinguish between the two density profiles. Our broadband fits suggest that GRB 070125 is a burst with high radiative efficiency (>60%).R. A. C. was supported in part by NASA grant NNG06GJ33G

    Dynamically Driven Evolution of the Interstellar Medium in M51

    Get PDF
    Massive star formation occurs in giant molecular clouds (GMCs); an understanding of the evolution of GMCs is a prerequisite to develop theories of star formation and galaxy evolution. We report the highest-fidelity observations of the grand-design spiral galaxy M51 in carbon monoxide (CO) emission, revealing the evolution of GMCs vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (giant molecular associations (GMAs)) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H_2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics—their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the interarm region and into the next spiral arm passage

    A Bright Submillimeter Source in the Bullet Cluster (1E0657--56) Field Detected with BLAST

    Get PDF
    We present the 250, 350, and 500 micron detection of bright submillimeter emission in the direction of the Bullet Cluster measured by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). The 500 micron centroid is coincident with an AzTEC 1.1 mm point-source detection at a position close to the peak lensing magnification produced by the cluster. However, the 250 micron and 350 micron centroids are elongated and shifted toward the south with a differential shift between bands that cannot be explained by pointing uncertainties. We therefore conclude that the BLAST detection is likely contaminated by emission from foreground galaxies associated with the Bullet Cluster. The submillimeter redshift estimate based on 250-1100 micron photometry at the position of the AzTEC source is z_phot = 2.9 (+0.6 -0.3), consistent with the infrared color redshift estimation of the most likely IRAC counterpart. These flux densities indicate an apparent far-infrared luminosity of L_FIR = 2E13 Lsun. When the amplification due to the gravitational lensing of the cluster is removed, the intrinsic far-infrared luminosity of the source is found to be L_FIR <= 10^12 Lsun, consistent with typical luminous infrared galaxies.Comment: Accepted for publication in the Astrophysical Journal. Maps are available at http://blastexperiment.info

    HerMES: Current Cosmic Infrared Background Estimates Can be Explained by Known Galaxies and their Faint Companions at z < 4

    Get PDF
    We report contributions to cosmic infrared background (CIB) intensities originating from known galaxies and their faint companions at submillimeter wavelengths. Using the publicly-available UltraVISTA catalog, and maps at 250, 350, and 500 {\mu}m from the \emph{Herschel} Multi-tiered Extragalactic Survey (HerMES), we perform a novel measurement that exploits the fact that uncatalogued sources may bias stacked flux densities --- particularly if the resolution of the image is poor --- and intentionally smooth the images before stacking and summing intensities. By smoothing the maps we are capturing the contribution of faint (undetected in K_S ~ 23.4) sources that are physically associated, or correlated, with the detected sources. We find that the cumulative CIB increases with increased smoothing, reaching 9.82 +- 0.78, 5.77 +- 0.43, and 2.32 +- 0.19 nWm−2sr−1\, \rm nW m^{-2} sr^{-1} at 250, 350, and 500 {\mu}m at 300 arcsec FWHM. This corresponds to a fraction of the fiducial CIB of 0.94 +- 0.23, 1.07 +- 0.31, and 0.97 +- 0.26 at 250, 350, and 500 {\mu}m, where the uncertainties are dominated by those of the absolute CIB. We then propose, with a simple model combining parametric descriptions for stacked flux densities and stellar mass functions, that emission from galaxies with log(M/Msun) > 8.5 can account for the most of the measured total intensities, and argue against contributions from extended, diffuse emission. Finally, we discuss prospects for future survey instruments to improve the estimates of the absolute CIB levels, and observe any potentially remaining emission at z > 4.Comment: Accepted to ApJL. 6 Pages, 3 figure
    • 

    corecore