16 research outputs found
A Universal Stellar Initial Mass Function? A Critical Look at Variations
Few topics in astronomy initiate such vigorous discussion as whether or not
the initial mass function (IMF) of stars is universal, or instead sensitive to
the initial conditions of star formation. The distinction is of critical
importance: the IMF influences most of the observable properties of stellar
populations and galaxies, and detecting variations in the IMF could provide
deep insights into the process by which stars form. In this review, we take a
critical look at the case for IMF variations, with a view towards whether other
explanations are sufficient given the evidence. Studies of the field, local
young clusters and associations, and old globular clusters suggest that the
vast majority were drawn from a "universal" IMF: a power-law of Salpeter index
() above a few solar masses, and a log normal or shallower
power-law () between a few tenths and a few solar masses
(ignoring the effects of unresolved binaries). The shape and universality of
the IMF at the stellar-substellar boundary is still under investigation and
uncertainties remain large, but most observations are consistent with a IMF
that declines () well below the hydrogen burning limit.
Observations of resolved stellar populations and the integrated properties of
most galaxies are also consistent with a "universal IMF", suggesting no gross
variations in the IMF over much of cosmic time. There are indications of
"non-standard" IMFs in specific local and extragalactic environments, which
clearly warrant further study. Nonetheless, there is no clear evidence that the
IMF varies strongly and systematically as a function of initial conditions
after the first few generations of stars.Comment: 49 pages, 5 figures, to appear in Annual Reviews of Astronomy and
Astrophysics (2010, volume 48
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Recommended from our members
The tenth data release of the Sloan digital sky survey: First spectroscopic data from the SDSS-iii apache point observatory galactic evolution experiment
The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the tenth public data release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R ~ 22,500 300-fiber spectrograph covering 1:514-1:696 μm. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included.
DR10 also roughly doubles the number of BOSS spectra over those included in the ninth data release. DR10 includes a total of 1,507,954 BOSS spectra, comprising 927,844 galaxy spectra; 182,009 quasar spectra; and 159,327 stellar spectra, selected over 6373.2 deg2.This is an author-created, un-copyedited version of an article accepted for publication in The Astrophysical Journal Supplement Series. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0067-0049/211/2/17. The accepted version will be under embargo until the 18th March 2015
EChO spectra and stellar activity II. The case of dM stars
EChO is a dedicated mission to investigate exoplanetary atmospheres. When extracting the planetary signal, one has to take care of the variability of the hosting star, which introduces spectral distortion that can be mistaken as planetary signal. Magneticvariability has to be taken into account in particular for M stars. To this purpose, assuming a one spot dominant model for the stellar photosphere, we develop a mixed observational-theoretical tool to extract the spot's parameters from the observed optical spectrum. This method relies on a robust library of spectral M templates, which we derive using the observed spectra of quiet M dwarfs in the SDSS database. Our procedure allows to correct the observed spectra for photospheric activity in most of the analyzed cases, reducing the spectral distortion down to the noise levels. Ongoing refinements of the template library and the algorithm will improve the efficiency of our algorithm. <P /
Spectroscopic Discovery of the Broad-Lined Type Ic Supernova 2010bh Associated with the Low-Redshift GRB 100316D
We present the spectroscopic discovery of a broad-lined Type Ic supernova (SN 2010bh) associated with the nearby long-duration gamma-ray burst (GRB) 100316D. At z = 0.0593, this is the third-nearest GRB-SN. Nightly optical spectra obtained with the Magellan telescopes during the first week after explosion reveal the gradual emergence of very broad spectral features superposed on a blue continuum. The supernova features are typical of broad-lined SNe Ic and are generally consistent with previous supernovae associated with low-redshift GRBs. However, the inferred velocities of SN 2010bh at 21 days after explosion are a factor of ~2 times larger than those of the prototypical SN 1998bw at similar epochs, with v ~ 26,000 km/s, indicating a larger explosion energy or a different ejecta structure. A near-infrared spectrum taken 13.8 days after explosion shows no strong evidence for He I at 1.083 microns, implying that the progenitor was largely stripped of its helium envelope. The host galaxy is of low luminosity (M_R ~ -18.5 mag) and low metallicity (Z < 0.4 Z_solar), similar to the hosts of other low-redshift GRB-SNe
Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence
Aurorae are detected from all the magnetized planets in our Solar System, including Earth(1). They are powered by magnetospheric current systems that lead to the precipitation of energetic electrons into the high-latitude regions of the upper atmosphere. In the case of the gas-giant planets, these aurorae include highly polarized radio emission at kilohertz and megahertz frequencies produced by the precipitating electrons(2), as well as continuum and line emission in the infrared, optical, ultraviolet and X-ray parts of the spectrum, associated with the collisional excitation and heating of the hydrogen-dominated atmosphere(3). Here we report simultaneous radio and optical spectroscopic observations of an object at the end of the stellar main sequence, located right at the boundary between stars and brown dwarfs, from which we have detected radio and optical auroral emissions both powered by magnetospheric currents. Whereas the magnetic activity of stars like our Sun is powered by processes that occur in their lower atmospheres, these aurorae are powered by processes originating much further out in the magnetosphere of the dwarf star that couple energy into the lower atmosphere. The dissipated power is at least four orders of magnitude larger than what is produced in the Jovian magnetosphere, revealing aurorae to be a potentially ubiquitous signature of large-scale magnetospheres that can scale to luminosities far greater than those observed in our Solar System. These magnetospheric current systems may also play a part in powering some of the weather phenomena reported on brown dwarfs
A temperate rocky super-Earth transiting a nearby cool star
International audienceM dwarf stars, which have masses less than 60 per cent that of the Sun, make up 75 per cent of the population of the stars in the Galaxy. The atmospheres of orbiting Earth-sized planets are observationally accessible via transmission spectroscopy when the planets pass in front of these stars. Statistical results suggest that the nearest transiting Earth-sized planet in the liquid-water, habitable zone of an M dwarf star is probably around 10.5 parsecs away. A temperate planet has been discovered orbiting Proxima Centauri, the closest M dwarf, but it probably does not transit and its true mass is unknown. Seven Earth-sized planets transit the very low-mass star TRAPPIST-1, which is 12 parsecs away, but their masses and, particularly, their densities are poorly constrained. Here we report observations of LHS 1140b, a planet with a radius of 1.4 Earth radii transiting a small, cool star (LHS 1140) 12 parsecs away. We measure the mass of the planet to be 6.6 times that of Earth, consistent with a rocky bulk composition. LHS 1140b receives an insolation of 0.46 times that of Earth, placing it within the liquid-water, habitable zone. With 90 per cent confidence, we place an upper limit on the orbital eccentricity of 0.29. The circular orbit is unlikely to be the result of tides and therefore was probably present at formation. Given its large surface gravity and cool insolation, the planet may have retained its atmosphere despite the greater luminosity (compared to the present-day) of its host star in its youth. Because LHS 1140 is nearby, telescopes currently under construction might be able to search for specific atmospheric gases in the future
THE ELEVENTH and TWELFTH DATA RELEASES of the SLOAN DIGITAL SKY SURVEY: FINAL DATA from SDSS-III
The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra