1,233 research outputs found

    Thermal shock resistance of silicon oxynitride

    Get PDF
    The thermal shock resistance of Si2N2O refractory material was studied. The thermal expansion coeff. is 3.55x10 to the -6th power at 20 to 800 C and 2.86x10 to the -6th power m/m/deg at 20 to 200 C. The breaking loads are high at high stress. Young's modulus E and the shear modulus G decrease linearly with increasing porosity. For dense material E sub o approx. = 216,500 N/mm2 and G approx = 90,600 N/mm2. The Vickers hardness of the dense material is comparable to that of sapphire. The results on thermal shock show that R, the breaking load, stays constant for T T sub c, the first cracks appear and R decreases sharply for T=T sub c. As the severity of the thermal shock is increased at T T sub c, a small no. of new, large-size cracks appears. The shock's cumulative effect is negligible, and repeated shocks do not change the cracks. The low values of the thermal expansion coefficient and Young's modulus and the high tension breaking load are considered. Sintered Si2N2O with 5% MgO shows excellent cracking resistance under thermal shock

    SAMP, the Simple Application Messaging Protocol: Letting applications talk to each other

    Full text link
    SAMP, the Simple Application Messaging Protocol, is a hub-based communication standard for the exchange of data and control between participating client applications. It has been developed within the context of the Virtual Observatory with the aim of enabling specialised data analysis tools to cooperate as a loosely integrated suite, and is now in use by many and varied desktop and web-based applications dealing with astronomical data. This paper reviews the requirements and design principles that led to SAMP's specification, provides a high-level description of the protocol, and discusses some of its common and possible future usage patterns, with particular attention to those factors that have aided its success in practice.Comment: 12 pages, 3 figures. Accepted for Virtual Observatory special issue of Astronomy and Computin

    Feasibility of Hair Collection for Cortisol Measurement in Population Research on Adolescent Health

    Get PDF
    Background: Black–White disparities in adolescent health are widespread and thought to be explained, in part, by exposure to chronic stress. Cortisol assayed from hair is increasingly recognized as a valid and reliable measure for chronic physiological stress, but the feasibility of collecting hair among large probability samples of diverse adolescents is unknown. Purpose: The aim of the study was to investigate participation in hair collection for cortisol analyses in a probability sample of racially and socioeconomically diverse adolescents, including the extent to which sociodemographic factors and adverse exposures were associated with participation. Methods: The study included a probability sample of 516 adolescents conducted in conjunction with a prospective cohort study on adolescent health. Data were collected over 1 week via in-home interviews, ecological momentary assessment, global positioning system methods, and in-home hair collection at the end of the week. Results: Of the 516 eligible youth, 471 (91.3%) participated in the hair collection. Of the 45 youth who did not provide hair samples, 18 had insufficient hair, 25 refused, and 2 did not participate for unknown reasons. Multivariable logistic regression results indicated that non-Hispanic Black youth were less likely than their non-Hispanic White peers to participate due to insufficient hair or refusal (OR = 0.24, 95% CI [0 .09, 0.60]). Despite lower rates of participation, the proportion of Black youth in the participating sample was representative of the study area. No significant differences in participation were found by other sociodemographic characteristics or adverse exposures. Conclusions: Hair collection for cortisol measurement is feasible among a probability sample of racially and socioeconomically diverse adolescents. Hair cortisol analyses may accelerate research progress to understand the biological and psychosocial bases of health disparities

    IVOA Recommendation: SAMP - Simple Application Messaging Protocol Version 1.3

    Full text link
    SAMP is a messaging protocol that enables astronomy software tools to interoperate and communicate. IVOA members have recognised that building a monolithic tool that attempts to fulfil all the requirements of all users is impractical, and it is a better use of our limited resources to enable individual tools to work together better. One element of this is defining common file formats for the exchange of data between different applications. Another important component is a messaging system that enables the applications to share data and take advantage of each other's functionality. SAMP builds on the success of a prior messaging protocol, PLASTIC, which has been in use since 2006 in over a dozen astronomy applications and has proven popular with users and developers. It is also intended to form a framework for more general messaging requirements

    Species–area relationships in continuous vegetation : evidence from Palaearctic grasslands

    Get PDF
    Aim: Species-area relationships (SARs) are fundamental scaling laws in ecology although their shape is still disputed. At larger areas power laws best represent SARs. Yet, it remains unclear whether SARs follow other shapes at finer spatial grains in continuous vegetation. We asked which function describes SARs best at small grains and explored how sampling methodology or the environment influence SAR shape. Location: Palaearctic grasslands and other non-forested habitats. Taxa: Vascular plants, bryophytes and lichens. Methods: We used the GrassPlot database, containing standardised vegetation-plot data from vascular plants, bryophytes, and lichens spanning a wide range of grassland types throughout the Palaearctic and including 2057 nested-plot series with at least seven grain sizes ranging from 1 cm2 to 1024 m². Using non-linear regression, we assessed the appropriateness of different SAR functions (power, power quadratic, power breakpoint, logarithmic, Michaelis-Menten). Based on AICc, we tested whether the ranking of functions differed among taxa, methodological settings, biomes or vegetation types. Results: The power function was the most suitable function across the studied taxonomic groups. The superiority of this function increased from lichens to bryophytes to vascular plants to all three taxonomic groups together. The sampling method was highly influential as rooted-presence sampling decreased the performance of the power function. By contrast, biome and vegetation type had practically no influence on the superiority of the power law. Main conclusions: We conclude that SARs of sessile organisms at smaller spatial grains are best approximated by a power function. This coincides with several other comprehensive studies of SARs at different grain sizes and for different taxa, thus supporting the general appropriateness of the power function for modelling species diversity over a wide range of grain sizes. The poor performance of the Michaelis-Menten function demonstrates that richness within plant communities generally does not approach any saturation, thus calling into question the concept of minimal area

    Normative Percent Differences between Inter-day and Inter-Limb Upper Extremity Volume in Healthy Adult Females

    Get PDF
    Lymphedema is a frequent complication of breast cancer treatments and can become a chronic condition. Diagnosing lymphedema early is essential to reverse the condition and prevent future complications. Segmental circumferential measurements are the most efficient, reliable, and clinically relevant method to measure UE volume. Diagnosing pre-clinical lymphedema requires an understanding of normal inter-day and inter-limb volume differences among healthy women.https://ecommons.udayton.edu/dpt_symposium/1016/thumbnail.jp

    AnnoTALE : bioinformatics tools for identification, annotation, and nomenclature of TALEs from Xanthomonas genomic sequences

    Get PDF
    Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present 'AnnoTALE', a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into classes. Based on these classes, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to related functionalities. This new classification enables us to compare related TALEs and to identify base substitutions responsible for the evolution of TALE specificities

    The whole and its parts : why and how to disentangle plant communities and synusiae in vegetation classification

    Get PDF
    Most plant communities consist of different structural and ecological subsets, ranging from cryptogams to different tree layers. The completeness and approach with which these subsets are sampled have implications for vegetation classification. Non‐vascular plants are often omitted or sometimes treated separately, referring to their assemblages as “synusiae” (e.g. epiphytes on bark, saxicolous species on rocks). The distinction of complete plant communities (phytocoenoses or holocoenoses) from their parts (synusiae or merocoenoses) is crucial to avoid logical problems and inconsistencies of the resulting classification systems. We here describe theoretical differences between the phytocoenosis as a whole and its parts, and outline consequences of this distinction for practise and terminology in vegetation classification. To implement a clearer separation, we call for modifications of the International Code of Phytosociological Nomenclature and the EuroVegChecklist. We believe that these steps will make vegetation classification systems better applicable and raise the recognition of the importance of non‐vascular plants in the vegetation as well as their interplay with vascular plants

    Reviewing the Carbonation Resistance of Concrete

    Get PDF
    The paper reviews the studies on one of the important durability properties of concrete i.e. Carbonation. One of the main causes of deterioration of concrete is carbonation, which occurs when carbon dioxide (CO2) penetrates the concrete’s porous system to create an environment with lower pH around the reinforcement in which corrosion can proceed. Carbonation is a major cause of degradation of concrete structures leading to expensive maintenance and conservation operations. Herein, the importance, process and effect of various parameters such as water/cement ratio, water/binder ratio, curing conditions, concrete cover, super plasticizers, type of aggregates, grade of concrete, porosity, contaminants, compaction, gas permeability, supplementary cementitious materials (SCMs)/ admixtures on the carbonation of concrete has been reviewed. Various methods for estimating the carbonation depth are also reported briefl
    corecore