471 research outputs found

    Soft Cache Hits and the Impact of Alternative Content Recommendations on Mobile Edge Caching

    Full text link
    Caching popular content at the edge of future mobile networks has been widely considered in order to alleviate the impact of the data tsunami on both the access and backhaul networks. A number of interesting techniques have been proposed, including femto-caching and "delayed" or opportunistic cache access. Nevertheless, the majority of these approaches suffer from the rather limited storage capacity of the edge caches, compared to the tremendous and rapidly increasing size of the Internet content catalog. We propose to depart from the assumption of hard cache misses, common in most existing works, and consider "soft" cache misses, where if the original content is not available, an alternative content that is locally cached can be recommended. Given that Internet content consumption is increasingly entertainment-oriented, we believe that a related content could often lead to complete or at least partial user satisfaction, without the need to retrieve the original content over expensive links. In this paper, we formulate the problem of optimal edge caching with soft cache hits, in the context of delayed access, and analyze the expected gains. We then show using synthetic and real datasets of related video contents that promising caching gains could be achieved in practice

    Infrared Thermography to an Aluminium Foam Sandwich Structure Subjected to Low Velocity Impact Tests

    Get PDF
    Abstract This work is the straightforward continuation of previous ones in which vibro-acoustic characteristics of AFS panels were investigated both numerically and experimentally. Herein, the use of infrared thermography (IRT) is exploited to investigate impact damaging of an aluminium foam sandwich panel by monitoring its surface, opposite to the impact, during a low velocity impact test, which is performed with a modified Charpy pendulum. Thermal images, acquired in time sequence during the impact by the infrared camera, are post-processed to get information useful for understanding absorption capabilities and impact damaging mechanisms of this kind of structure

    Thermodynamic Analysis of a Multi-Ejector, CO2, Air-To-Water Heat Pump System

    Get PDF
    Abstract Nowadays, air conditioning systems for residential and office buildings, contribute largely to the energy consumptions and to the direct and indirect emissions of greenhouse gases. Carbon dioxide (CO2) could be an interesting option to replace traditional HFCs in space heating applications, due to its environmentally friendly characteristics: zero ODP and extremely low GWP, but, in order to spread its use, improvements in performances are needed. In fact, CO2 requires transcritical cycles with high expansion losses. The use of an ejector can reduce these losses and improve the performances up to 30% (depending on the performances of the ejector itself and on the operating conditions). In the a/c applications, characterized by variable operating conditions, multi-ejector systems could be used, where some ejectors work in parallel, in different combination, varying the operating conditions. Currently, a project of DTE-PCU-SPCT Department of ENEA and Industrial Engineering Department of Federico II University of Naples, is in progress, in order to evaluate experimentally the effect of several ejectors geometries on the global performance of a CO2 heat pump working with a transcritical cycle. As a part of this project, a complete heat pump system for production of hot water for sanitary use and for space heating is tested to investigate the effect of the ejector size on the balancing of the global performance of the whole system

    The TeV-emitting radio galaxy 3C 264. VLBI kinematics and SED modeling

    Get PDF
    Context. In March 2018, the detection by VERITAS of very-high-energy emission (VHE > 100 GeV) from 3C 264 was reported. This is the sixth, and second most distant, radio galaxy ever detected in the TeV regime. Aims: In this article we present a radio and X-ray analysis of the jet in 3C 264. We determine the main physical parameters of the parsec-scale flow and explore the implications of the inferred kinematic structure for radiative models of this γ-ray emitting jet. Methods: The radio data set is comprised of VLBI observations at 15 GHz from the MOJAVE program, and covers a time period of about two years. Through a segmented wavelet decomposition method (WISE code), we estimated the apparent displacement of individual plasma features; we then performed a pixel-based analysis of the stacked image to determine the jet shape. The X-ray data set includes all available observations from the Chandra, XMM, and Swift satellites, and is used, together with archival data in the other bands, to build the spectral energy distribution (SED). Results: Proper motion is mostly detected along the edges of the flow, which appears strongly limb brightened. The apparent speeds increase as a function of distance from the core up to a maximum of ̃11.5 c. This constrains the jet viewing angle to assume relatively small values (θ ≲ 10°). In the acceleration region, extending up to a de-projected distance of ̃4.8 × 104 Schwarzschild radii (̃11 pc), the jet is collimating (r ∝ z0.40 ± 0.04), as predicted for a magnetically-driven plasma flow. By assuming that the core region is indeed magnetically dominated (UB/Ue > 1), the SED and the jet power can be well reproduced in the framework of leptonic models, provided that the high-energy component is associated to a second emitting region. The possibility that this region is located at the end of the acceleration zone, either in the jet layer or in the spine, is explored in the modeling

    The TeV-emitting radio galaxy 3C 264. VLBI kinematics and SED modeling

    Get PDF
    Context. In March 2018, the detection by VERITAS of very-high-energy emission (VHE > 100 GeV) from 3C 264 was reported. This is the sixth, and second most distant, radio galaxy ever detected in the TeV regime. Aims: In this article we present a radio and X-ray analysis of the jet in 3C 264. We determine the main physical parameters of the parsec-scale flow and explore the implications of the inferred kinematic structure for radiative models of this γ-ray emitting jet. Methods: The radio data set is comprised of VLBI observations at 15 GHz from the MOJAVE program, and covers a time period of about two years. Through a segmented wavelet decomposition method (WISE code), we estimated the apparent displacement of individual plasma features; we then performed a pixel-based analysis of the stacked image to determine the jet shape. The X-ray data set includes all available observations from the Chandra, XMM, and Swift satellites, and is used, together with archival data in the other bands, to build the spectral energy distribution (SED). Results: Proper motion is mostly detected along the edges of the flow, which appears strongly limb brightened. The apparent speeds increase as a function of distance from the core up to a maximum of ̃11.5 c. This constrains the jet viewing angle to assume relatively small values (θ ≲ 10°). In the acceleration region, extending up to a de-projected distance of ̃4.8 × 104 Schwarzschild radii (̃11 pc), the jet is collimating (r ∝ z0.40 ± 0.04), as predicted for a magnetically-driven plasma flow. By assuming that the core region is indeed magnetically dominated (UB/Ue > 1), the SED and the jet power can be well reproduced in the framework of leptonic models, provided that the high-energy component is associated to a second emitting region. The possibility that this region is located at the end of the acceleration zone, either in the jet layer or in the spine, is explored in the modeling

    Dementia, infections and vaccines: 30 years of controversy

    Get PDF
    This paper reports the proceedings of a virtual meeting convened by the European Interdisciplinary Council on Ageing (EICA), to discuss the involvement of infectious disorders in the pathogenesis of dementia and neurological disorders leading to dementia. We recap how our view of the infectious etiology of dementia has changed over the last 30 years in light of emerging evidence, and we present evidence in support of the implication of infection in dementia, notably Alzheimer’s disease (AD). The bacteria and viruses thought to be responsible for neuroinflammation and neurological damage are reviewed. We then review the genetic basis for neuroinflammation and dementia, highlighting the genes that are currently the focus of investigation as potential targets for therapy. Next, we describe the antimicrobial hypothesis of dementia, notably the intriguing possibility that amyloid beta may itself possess antimicrobial properties. We further describe the clinical relevance of the gut–brain axis in dementia, the mechanisms by which infection can move from the intestine to the brain, and recent findings regarding dysbiosis patterns in patients with AD. We review the involvement of specific pathogens in neurological disorders, i.e. SARS-CoV-2, human immunodeficiency virus (HIV), herpes simplex virus type 1 (HSV1), and influenza. Finally, we look at the role of vaccination to prevent dementia. In conclusion, there is a large body of evidence supporting the involvement of various infectious pathogens in the pathogenesis of dementia, but large-scale studies with long-term follow-up are needed to elucidate the role that infection may play, especially before subclinical or clinical disease is present

    EANM-EAN recommendations for the use of brain 18 F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) in neurodegenerative cognitive impairment and dementia: Delphi consensus

    Get PDF
    BACKGROUND: Recommendations for using FDG-PET to support the diagnosis of dementing neurodegenerative disorders are sparse and poorly structured. METHODS: We defined 21 questions on diagnostic issues and on semi-automated analysis to assist visual reading. Literature was reviewed to assess study design, risk of bias, inconsistency, imprecision, indirectness and effect size. Critical outcomes were sensitivity, specificity, accuracy, positive/negative predictive value, area under the receiving operating characteristic curve, and positive/negative likelihood ratio of FDG-PET in detecting the target conditions. Using the Delphi method, an expert panel voted for/against the use of FDG-PET based on published evidence and expert opinion. RESULTS: Of the 1435 papers, 58 provided proper quantitative assessment of test performance. The panel agreed on recommending FDG-PET for 14 questions: diagnosing mild cognitive impairment due to Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) or dementia with Lewy bodies (DLB); diagnosing atypical AD and pseudodementia; differentiating between AD and DLB, FTLD, or vascular dementia, between DLB and FTLD, and between Parkinson's disease (PD) and progressive supranuclear palsy; suggesting underlying pathophysiology in corticobasal degeneration and progressive primary aphasia, and cortical dysfunction in PD; using semi-automated assessment to assist visual reading. Panelists did not support FDG-PET use for preclinical stages of neurodegenerative disorders, for amyotrophic lateral sclerosis (ALS) and Huntington disease (HD) diagnoses, and ALS or HD-related cognitive decline. CONCLUSIONS: Despite limited formal evidence, panelists deemed FDG-PET useful in the early and differential diagnosis of the main neurodegenerative disorders, and semiautomated assessment helpful to assist visual reading. These decisions are proposed as interim recommendations. This article is protected by copyright. All rights reserved

    Diagnostic utility of FDG-PET in the differential diagnosis between different forms of primary progressive aphasia

    Get PDF
    PURPOSE: A joint effort of the European Association of Nuclear Medicine (EANM) and the European Academy of Neurology (EAN) aims at clinical guidance for the use of FDG-PET in neurodegenerative diseases. This paper addresses the diagnostic utility of FDG-PET over clinical/neuropsychological assessment in the differentiation of the three forms of primary progressive aphasia (PPA). METHODS: Seven panelists were appointed by the EANM and EAN and a literature search was performed by using harmonized PICO (Population, Intervention, Comparison, Outcome) question keywords. The studies were screened for eligibility, and data extracted to assess their methodological quality. Critical outcomes were accuracy indices in differentiating different PPA clinical forms. Subsequently Delphi rounds were held with the extracted data and quality assessment to reach a consensus based on both literature and expert opinion. RESULTS: Critical outcomes for this PICO were available in four of the examined papers. The level of formal evidence supporting clinical utility of FDG-PET in differentiating among PPA variants was considered as poor. However, the consensual recommendation was defined on Delphi round I, with six out of seven panelists supporting clinical use. CONCLUSIONS: Quantitative evidence demonstrating utility or lack thereof is still missing. Panelists decided consistently to provide interim support for clinical use based on the fact that a typical atrophy or metabolic pattern is needed for PPA according to the diagnostic criteria, and the synaptic failure detected by FDG-PET is an earlier phenomenon than atrophy. Also, a normal FDG-PET points to a non-neurodegenerative cause

    Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector

    Full text link
    The silicon pixel detector (SPD) of the ALICE experiment in preparation at the Large Hadron Collider (LHC) at CERN is designed to provide the precise vertex reconstruction needed for measuring heavy flavor production in heavy ion collisions at very high energies and high multiplicity. The SPD forms the innermost part of the Inner Tracking System (ITS) which also includes silicon drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD have been tested at the CERN SPS using high energy proton/pion beams in 2002 and 2003. We report on the experimental determination of the spatial precision. We also report on the first combined beam test with prototypes of the other ITS silicon detector technologies at the CERN SPS in November 2004. The issue of SPD simulation is briefly discussed.Comment: 4 pages, 5 figures, prepared for proceedings of 7th International Position Sensitive Detectors Conference, Liverpool, Sept. 200
    corecore