7 research outputs found
The INSIDEOUT framework provides precise signatures of the balance of intrinsic and extrinsic dynamics in brain states
Finding precise signatures of different brain states is a central, unsolved question in neuroscience. We reformulated the problem to quantify the 'inside out' balance of intrinsic and extrinsic brain dynamics in brain states. The difference in brain state can be described as differences in the detailed causal interactions found in the underlying intrinsic brain dynamics. We used a thermodynamics framework to quantify the breaking of the detailed balance captured by the level of asymmetry in temporal processing, i.e. the arrow of time. Specifically, the temporal asymmetry was computed by the time-shifted correlation matrices for the forward and reversed time series, reflecting the level of non-reversibility/non-equilibrium. We found precise, distinguishing signatures in terms of the reversibility and hierarchy of large-scale dynamics in three radically different brain states (awake, deep sleep and anaesthesia) in electrocorticography data from non-human primates. Significantly lower levels of reversibility were found in deep sleep and anaesthesia compared to wakefulness. Non-wakeful states also showed a flatter hierarchy, reflecting the diversity of the reversibility across the brain. Overall, this provides signatures of the breaking of detailed balance in different brain states, perhaps reflecting levels of conscious awareness
Temporal irreversibility of neural dynamics as a signature of consciousness
Dissipative systems evolve in the preferred temporal direction indicated by the thermodynamic arrow of time. The fundamental nature of this temporal asymmetry led us to hypothesize its presence in the neural activity evoked by conscious perception of the physical world, and thus its covariance with the level of conscious awareness. We implemented a data-driven deep learning framework to decode the temporal inversion of electrocorticography signals acquired from non-human primates. Brain activity time series recorded during conscious wakefulness could be distinguished from their inverted counterparts with high accuracy, both using frequency and phase information. However, classification accuracy was reduced for data acquired during deep sleep and under ketamine-induced anesthesia; moreover, the predictions obtained from multiple independent neural networks were less consistent for sleep and anesthesia than for conscious wakefulness. Finally, the analysis of feature importance scores highlighted transitions between slow (20 Hz) and fast frequencies (>40 Hz) as the main contributors to the temporal asymmetry observed during conscious wakefulness. Our results show that a preferred temporal direction is manifest in the neural activity evoked by conscious mentation and in the phenomenology of the passage of time, establishing common ground to tackle the relationship between brain and subjective experience
The avalanche-like behaviour of large-scale haemodynamic activity from wakefulness to deep sleep
Increasing evidence suggests that responsiveness is associated with critical or near-critical cortical dynamics, which exhibit scale-free cascades of spatiotemporal activity. These cascades, or 'avalanches', have been detected at multiple scales, from in vitro and in vivo microcircuits to voltage imaging and brain-wide functional magnetic resonance imaging (fMRI) recordings. Criticality endows the cortex with certain information-processing capacities postulated as necessary for conscious wakefulness, yet it remains unknown how unresponsiveness impacts on the avalanche-like behaviour of large-scale human haemodynamic activity. We observed a scale-free hierarchy of co-activated connected clusters by applying a point-process transformation to fMRI data recorded during wakefulness and non-rapid eye movement (NREM) sleep. Maximum-likelihood estimates revealed a significant effect of sleep stage on the scaling parameters of the cluster size power-law distributions. Post hoc statistical tests showed that differences were maximal between wakefulness and N2 sleep. These results were robust against spatial coarse graining, fitting alternative statistical models and different point-process thresholds, and disappeared upon phase shuffling the fMRI time series. Evoked neural bistabilities preventing arousals during N2 sleep do not suffice to explain these differences, which point towards changes in the intrinsic dynamics of the brain that could be necessary to consolidate a state of deep unresponsiveness.Fil: Bocaccio, Hernan. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de FÃsica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FÃsica de Buenos Aires; ArgentinaFil: Pallavicini, Carla. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de FÃsica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FÃsica de Buenos Aires; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Castro, Mariana Nair. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Salud Mental; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Sanchez, Stella Maris. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de FÃsica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FÃsica de Buenos Aires; ArgentinaFil: De Pino, G.. Universidad Nacional de San MartÃn. Escuela de Ciencia y TecnologÃa; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Laufs, H.. Christian Albrechts Universitat Zu Kiel; AlemaniaFil: Villarreal, Mirta Fabiana. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de FÃsica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FÃsica de Buenos Aires; ArgentinaFil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de FÃsica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FÃsica de Buenos Aires; Argentin