63 research outputs found

    UNRAVELING THE COMPLEX GENETICS OF NEUROLOGICAL DISORDERS

    Get PDF

    Assessing the performance of European-derived cardiometabolic polygenic risk scores in South-Asians and their interplay with family history

    Get PDF
    Background & aims We aimed to assess the performance of European-derived polygenic risk scores (PRSs) for common metabolic diseases such as coronary artery disease (CAD), obesity, and type 2 diabetes (T2D) in the South Asian (SAS) individuals in the UK Biobank. Additionally, we studied the interaction between PRS and family history (FH) in the same population. Methods To calculate the PRS, we used a previously published model derived from the EUR population and applied it to the individuals of SAS ancestry from the UKB study. Each PRS was adjusted according to an individual’s genotype location in the principal components (PC) space to derive an ancestry adjusted PRS (aPRS). We calculated the percentiles based on aPRS and stratified individuals into three aPRS categories: low, intermediate, and high. Considering the intermediate-aPRS percentile as a reference, we compared the low and high aPRS categories and generated the odds ratio (OR) estimates. Further, we measured the combined role of aPRS and first-degree family history (FH) in the SAS population. Results The risk of developing severe obesity for SAS individuals was almost twofold higher for individuals with high aPRS than for those with intermediate aPRS, with an OR of 1.95 (95% CI = 1.71–2.23, P < 0.01). At the same time, the risk of severe obesity was lower in the low-aPRS group (OR = 0.60, CI = 0.53–0.67, P < 0.01). Results in the same direction were found in the EUR data, where the low-PRS group had an OR of 0.53 (95% CI = 0.51–0.56, P < 0.01) and the high-PRS group had an OR of 2.06 (95% CI = 2.00-2.12, P < 0.01). We observed similar results for CAD and T2D. Further, we show that SAS individuals with a familial history of CAD and T2D with high-aPRS are associated with a higher risk of these diseases, implying a greater genetic predisposition. Conclusion Our findings suggest that CAD, obesity, and T2D GWAS summary statistics generated predominantly from the EUR population can be potentially used to derive aPRS in SAS individuals for risk stratification. With future GWAS recruiting more SAS participants and tailoring the PRSs towards SAS ancestry, the predictive power of PRS is likely to improve further

    Extracellular vesicles in human skin: cross-talk from senescent fibroblasts to keratinocytes by miRNAs

    Get PDF
    Extracellular vesicles (EVs) and their miRNA cargo are intercellular communicators transmitting their pleiotropic messages between different cell types, tissues, and body fluids. Recently, they have been reported to contribute to skin homeostasis and were identified as members of the senescence-associated secretory phenotype of human dermal fibroblasts. However, the role of EV-miRNAs in paracrine signaling during skin aging is yet unclear. Here we provide evidence for the existence of small EVs in the human skin and dermal interstitial fluid using dermal open flow microperfusion and show that EVs and miRNAs are transferred from dermal fibroblasts to epidermal keratinocytes in 2D cell culture and in human skin equivalents. We further show that the transient presence of senescent fibroblast derived small EVs accelerates scratch closure of epidermal keratinocytes, whereas long-term incubation impairs keratinocyte differentiation in vitro. Finally, we identify vesicular miR-23a-3p, highly secreted by senescent fibroblasts, as one contributor of the EV-mediated effect on keratinocytes in in vitro wound healing assays. To summarize, our findings support the current view that EVs and their miRNA cargo are members of the senescence-associated secretory phenotype and, thus, regulators of human skin homeostasis during aging

    Accurate long-read sequencing identified GBA1 as major risk factor in the Luxembourgish Parkinson's study.

    Get PDF
    peer reviewedHeterozygous variants in the glucocerebrosidase GBA1 gene are an increasingly recognized risk factor for Parkinson's disease (PD). Due to the GBAP1 pseudogene, which shares 96% sequence homology with the GBA1 coding region, accurate variant calling by array-based or short-read sequencing methods remains a major challenge in understanding the genetic landscape of GBA1-associated PD. We analyzed 660 patients with PD, 100 patients with Parkinsonism and 808 healthy controls from the Luxembourg Parkinson's study, sequenced using amplicon-based long-read DNA sequencing technology. We found that 12.1% (77/637) of PD patients carried GBA1 variants, with 10.5% (67/637) of them carrying known pathogenic variants (including severe, mild, risk variants). In comparison, 5% (34/675) of the healthy controls carried GBA1 variants, and among them, 4.3% (29/675) were identified as pathogenic variant carriers. We found four GBA1 variants in patients with atypical parkinsonism. Pathogenic GBA1 variants were 2.6-fold more frequently observed in PD patients compared to controls (OR = 2.6; CI = [1.6,4.1]). Three novel variants of unknown significance (VUS) were identified. Using a structure-based approach, we defined a potential risk prediction method for VUS. This study describes the full landscape of GBA1-related parkinsonism in Luxembourg, showing a high prevalence of GBA1 variants as the major genetic risk for PD. Although the long-read DNA sequencing technique used in our study may be limited in its effectiveness to detect potential structural variants, our approach provides an important advancement for highly accurate GBA1 variant calling, which is essential for providing access to emerging causative therapies for GBA1 carriers.R-AGR-0592 - FNR - NCER-PD Phase II Coordination (01/06/2015 - 30/11/2023) - KRÜGER Rejko3. Good health and well-bein

    Trans-ancestry polygenic models for the prediction of LDL blood levels: an analysis of the United Kingdom Biobank and Taiwan Biobank

    Get PDF
    peer reviewedPolygenic risk score (PRS) predictions often show bias toward the population of available genome-wide association studies (GWASs), which is typically of European ancestry. This study aimed to assess the performance differences of ancestry-specific PRS and test the implementation of multi-ancestry PRS to enhance the generalizability of low-density lipoprotein (LDL) cholesterol predictions in the East Asian (EAS) population. In this study, we computed ancestry-specific and multi-ancestry PRSs for LDL using data obtained from the Global Lipid Genetics Consortium, while accounting for population-specific linkage disequilibrium patterns using the PRS-CSx method in the United Kingdom Biobank dataset (UKB, n = 423,596) and Taiwan Biobank dataset (TWB, n = 68,978). Population-specific PRSs were able to predict LDL levels better within the target population, whereas multi-ancestry PRSs were more generalizable. In the TWB dataset, covariate-adjusted R2 values were 9.3% for ancestry-specific PRS, 6.7% for multi-ancestry PRS, and 4.5% for European-specific PRS. Similar trends (8.6%, 7.8%, and 6.2%) were observed in the smaller EAS population of the UKB (n = 1,480). Consistent with R2 values, PRS stratification in EAS regions (TWB) effectively captured a heterogenous variability in LDL blood cholesterol levels across PRS strata. The mean difference in LDL levels between the lowest and highest EAS-specific PRS (EAS_PRS) deciles was 0.82, compared to 0.59 for European-specific PRS (EUR_PRS) and 0.76 for multi-ancestry PRS. Notably, the mean LDL values in the top decile of multi-ancestry PRS were comparable to those of EAS_PRS (3.543 vs. 3.541, p = 0.86). Our analysis of the PRS prediction model for LDL cholesterol further supports the issue of PRS generalizability across populations. Our targeted analysis of the EAS population revealed that integrating non-European genotyping data with a powerful European-based GWAS can enhance the generalizability of LDL PRS.3. Good health and well-bein

    Functional validation of a mitochondria-specific polygenic risk score in patient-based models for stratification of idiopathic Parkinson's disease

    Get PDF
    peer reviewedBackground: A large body of evidence specifically points to mitochondrial dysfunction as a major cause of Parkinson’s disease (PD) pathogenesis. Given that only ~10% of PD cases can be attributed to monogenic causes, we hypothesize that a fraction of idiopathic PD (iPD) cases may harbour a pathogenic combination of common variants in mitochondrial genes ultimately resulting in mitochondrial dysfunction. Objectives: To gain essential knowledge on the contribution of genetic variability in nuclear-encoded mitochondrial genes to iPD pathogenesis. Starting from genomic data, we aim to functionally validate mitochondrial polygenic risk profiles in patient-based cellular models, thus defining mitochondrial pathways potentially involved in neurodegeneration in subgroups of iPD patients.R-AGR-0592 - FNR - NCER-PD Phase II Coordination (01/06/2015 - 30/11/2023) - KRÜGER Rejko3. Good health and well-bein

    Polygenic Resilience Modulates the Penetrance of Parkinson Disease Genetic Risk Factors

    Get PDF
    peer reviewedObjective: The aim of the current study is to understand why some individuals avoid developing Parkinson disease (PD) despite being at relatively high genetic risk, using the largest datasets of individual-level genetic data available. Methods: We calculated polygenic risk score to identify controls and matched PD cases with the highest burden of genetic risk for PD in the discovery cohort (International Parkinson's Disease Genomics Consortium, 7,204 PD cases and 9,412 controls) and validation cohorts (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease, 8,968 cases and 7,598 controls; UK Biobank, 2,639 PD cases and 14,301 controls; Accelerating Medicines Partnership–Parkinson's Disease Initiative, 2,248 cases and 2,817 controls). A genome-wide association study meta-analysis was performed on these individuals to understand genetic variation associated with resistance to disease. We further constructed a polygenic resilience score, and performed multimarker analysis of genomic annotation (MAGMA) gene-based analyses and functional enrichment analyses. Results: A higher polygenic resilience score was associated with a lower risk for PD (β = −0.054, standard error [SE] = 0.022, p = 0.013). Although no single locus reached genome-wide significance, MAGMA gene-based analyses nominated TBCA as a putative gene. Furthermore, we estimated the narrow-sense heritability associated with resilience to PD (h2 = 0.081, SE = 0.035, p = 0.0003). Subsequent functional enrichment analysis highlighted histone methylation as a potential pathway harboring resilience alleles that could mitigate the effects of PD risk loci. Interpretation: The present study represents a novel and comprehensive assessment of heritable genetic variation contributing to PD resistance. We show that a genetic resilience score can modify the penetrance of PD genetic risk factors and therefore protect individuals carrying a high-risk genetic burden from developing PD. ANN NEUROL 202

    A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease

    Get PDF
    Common variants of about 20 genes contributing to AD risk have so far been identified through genome-wide association studies (GWAS). However, there is still a large proportion of heritability that might be explained by rare but functionally important variants. One of the so far identified genes with rare AD causing variants is ADAM10. Using whole-genome sequencing we now identified a single rare nonsynonymous variant (SNV) rs142946965 [p.R215I] in ADAM17 co-segregating with an autosomal-dominant pattern of late-onset AD in one family. Subsequent genotyping and analysis of available whole-exome sequencing data of additional case/control samples from Germany, UK, and USA identified five variant carriers among AD patients only. The mutation inhibits pro-protein cleavage and the formation of the active enzyme, thus leading to loss-of-function of ADAM17 alpha-secretase. Further, we identified a strong negative correlation between ADAM17 and APP gene expression in human brain and present in vitro evidence that ADAM17 negatively controls the expression of APP. As a consequence, p.R215I mutation of ADAM17 leads to elevated Aß formation in vitro. Together our data supports a causative association of the identified ADAM17 variant in the pathogenesis of AD
    • …
    corecore