9 research outputs found

    Effect of noble metal addition over active Ru/TiO2 catalyst for CO selective methanation from H2 rich-streams

    Get PDF
    Financial support for this work has been obtained from the Spanish Ministerio de Ciencia, Innovacion y Universidades (Grant: RTI2018-096294-B-C33) and Junta de Andalucia project with reference US-1263288, both programs being co-funded by the European Union FEDER.Selective CO methanation from H2-rich stream has been regarded as a promising route for deep removal of low CO concentration and catalytic hydrogen purification processes. This work is focused on the development of more efficient catalysts applied in practical conditions. For this purpose, we prepared a series of catalysts based on Ru supported over titania and promoted with small amounts of Rh and Pt. Characterization details revealed that Rh and Pt modify the electronic properties of Ru. The results of catalytic activity showed that Pt has a negative effect since it promotes the reverse water gas shift reaction decreasing the selectivity of methanation but Rh increases remarkably the activity and selectivity of CO methanation. The obtained results suggest that RuRh-based catalyst could become important for the treatment of industrial-volume streams.Spanish Government RTI2018-096294-B-C33European Union (EU)Junta de Andalucia US-126328

    Comparison of traditional and DNA metabarcoding samples for monitoring tropical soil arthropods (Formicidae, Collembola and Isoptera)

    Get PDF
    The soil fauna of the tropics remains one of the least known components of the biosphere. Long-term monitoring of this fauna is hampered by the lack of taxonomic expertise and funding. These obstacles may potentially be lifted with DNA metabarcoding. To validate this approach, we studied the ants, springtails and termites of 100 paired soil samples from Barro Colorado Island, Panama. The fauna was extracted with Berlese-Tullgren funnels and then either sorted with traditional taxonomy and known, individual DNA barcodes (“traditional samples”) or processed with metabarcoding (“metabarcoding samples”). We detected 49 ant, 37 springtail and 34 termite species with 3.46 million reads of the COI gene, at a mean sequence length of 233 bp. Traditional identification yielded 80, 111 and 15 species of ants, springtails and termites, respectively; 98%, 37% and 100% of these species had a Barcode Index Number (BIN) allowing for direct comparison with metabarcoding. Ants were best surveyed through traditional methods, termites were better detected by metabarcoding, and springtails were equally well detected by both techniques. Species richness was underestimated, and faunal composition was different in metabarcoding samples, mostly because 37% of ant species were not detected. The prevalence of species in metabarcoding samples increased with their abundance in traditional samples, and seasonal shifts in species prevalence and faunal composition were similar between traditional and metabarcoding samples. Probable false positive and negative species records were reasonably low (13–18% of common species). We conclude that metabarcoding of samples extracted with Berlese-Tullgren funnels appear suitable for the long-term monitoring of termites and springtails in tropical rainforests. For ants, metabarcoding schemes should be complemented by additional samples of alates from Malaise or light traps

    Biomass gasification, catalytic technologies and energy integration for production of circular methanol: New horizons for industry decarbonisation

    No full text
    The Intergovernmental Panel on Climate Change (IPCC) recognises the pivotal role of renewable energies in the future energy system and the achievement of the zero-emission target. The implementation of renewables should provide major opportunities and enable a more secure and decentralised energy supply system. Renewable fuels provide long-term solutions for the transport sector, particularly for applications where fuels with high energy density are required. In addition, it helps reducing the carbon footprint of these sectors in the long-term. Information on biomass characteristics feedstock is essential for scaling-up gasification from the laboratory to industrial-scale. This review deals with the transformation biogenic residues into a valuable bioenergy carrier like biomethanol as the liquid sunshine based on the combination of modified mature technologies such as gasification with other innovative solutions such as membranes and microchannel reactors. Tar abatement is a critical process in product gas upgrading since tars compromise downstream processes and equipment, for this, membrane technology for upgrading syngas quality is discussed in this paper. Microchannel reactor technology with the design of state-of-the-art multifunctional catalysts provides a path to develop decentralised biomethanol synthesis from biogenic residues. Finally, the development of a process chain for the production of (i) methanol as an intermediate energy carrier, (ii) electricity and (iii) heat for decentralised applications based on biomass feedstock flexible gasification, gas upgrading and methanol synthesis is analysed

    Recent Advances in Catalytic Conversion of Glycerol

    No full text

    Nano-antimicrobials: A New Paradigm for Combating Mycobacterial Resistance

    No full text
    corecore