498 research outputs found

    Overcoming Redundancy: An RNAi Enhancer Screen for Morphogenesis Genes in Caenorhabditis elegans

    Get PDF
    Morphogenesis is an important component of animal development. Genetic redundancy has been proposed to be common among morphogenesis genes, posing a challenge to the genetic dissection of morphogenesis mechanisms. Genetic redundancy is more generally a challenge in biology, as large proportions of the genes in diverse organisms have no apparent loss of function phenotypes. Here, we present a screen designed to uncover redundant and partially redundant genes that function in an example of morphogenesis, gastrulation in Caenorhabditis elegans. We performed an RNA interference (RNAi) enhancer screen in a gastrulation-sensitized double-mutant background, targeting genes likely to be expressed in gastrulating cells or their neighbors. Secondary screening identified 16 new genes whose functions contribute to normal gastrulation in a nonsensitized background. We observed that for most new genes found, the closest known homologs were multiple other C. elegans genes, suggesting that some may have derived from rounds of recent gene duplication events. We predict that such genes are more likely than single copy genes to comprise redundant or partially redundant gene families. We explored this prediction for one gene that we identified and confirmed that this gene and five close relatives, which encode predicted substrate recognition subunits (SRSs) for a CUL-2 ubiquitin ligase, do indeed function partially redundantly with each other in gastrulation. Our results implicate new genes in C. elegans gastrulation, and they show that an RNAi-based enhancer screen in C. elegans can be used as an efficient means to identify important but redundant or partially redundant developmental genes

    Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency

    Get PDF
    To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35°C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.
Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1µm.
The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.
Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0°C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats

    Clinical validation of Guardant360 CDx as a blood-based companion diagnostic for sotorasib

    Get PDF
    OBJECTIVES Effective therapy for non-small-cell lung cancer (NSCLC) depends on morphological and genomic classification, with comprehensive screening for guideline-recommended biomarkers critical to guide treatment. Companion diagnostics, which provide robust genotyping results, represent an important component of personalized oncology. We evaluated the clinical validity of Guardant360 CDx as a companion diagnostic for sotorasib for detection of KRAS p.G12C, an important oncogenic NSCLC driver mutation. MATERIALS AND METHODS KRAS p.G12C was tested in NSCLC patients from CodeBreaK100 (NCT03600833) in pretreatment plasma samples using Guardant360 CDx liquid biopsy and archival tissue samples using therascreen® KRAS RGQ polymerase chain reaction (PCR) kit tissue testing. Matched tissue and plasma samples were procured from other clinical trials or commercial vendors, and results were compared. Demographics and clinical characteristics and objective response rate (ORR) were evaluated. RESULTS Of 126 CodeBreaK patients, 112 (88.9%) were tested for KRASp.G12C mutations with Guardant360 CDx. Among 189 patients in the extended analysis cohort, the positive and negative percent agreement (95% CI) for Guardant360 CDx plasma testing relative to therascreen® KRAS RGQ PCR kit tissue testing were 0.71 (0.62, 0.79) and 1.00 (0.95, 1.00), respectively; overall percent agreement (95% CI) was 0.82 (0.76, 0.87). TP53 co-mutations were the most common regardless of KRAS p.G12C status (KRAS p.G12C-positive, 53.4%; KRAS p.G12C-negative, 45.5%). STK11 was co-mutated in 26.1% of KRAS p.G12C-positive samples. The ORR was similar among patients selected by plasma and tissue testing. CONCLUSION Comprehensive genotyping for all therapeutic targets including KRAS p.G12C is critical for management of NSCLC. Liquid biopsy using Guardant360 CDx has clinical validity for identification of patients with KRASp.G12C-mutant NSCLC and, augmented by tissue testing methodologies as outlined on the approved product label, will identify patients for treatment with sotorasib

    Effects of place attachment on home return travel: a spatial perspective

    Get PDF
    Recent studies on place-mobility relationships suggest an increasing possibility that people can have multiple place attachments at varied spatial scales. Yet our understanding of how place attachment in different spatial scales affects mobility remains limited. This study investigates home return visits by Chinese diaspora tourists from North America who have made multiple trips to China. A total of 27 in-depth interviews with repeat home return travellers was conducted. Four different types of return movements were identified: local; dispersed; local & dispersed; and second-migration locale focused. A relationship was found between the participants’ sense of place, place identity and home return travel. The findings suggest that home return travel is more complex than previously thought. More focused sense of place and strong personal connection to ancestral homes may lead to more localized return, while a more generic sense of place (i.e. to ‘China’) and collective personal identity would result in a more dispersed travel pattern. Family migration history and strong attachment to family’s first migration destination also leads to focused return to the place. The study highlights the fact that place and place attachment are deeply personal and can evolve over time and space

    Tacky Elastomers to Enable Tear-Resistant and Autonomous Self-Healing Semiconductor Composites

    Get PDF
    Mechanical failure of π-conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack propagation. Here, the first tear-resistant and room-temperature self-healable semiconducting composite is presented, consisting of conjugated polymers and butyl rubber elastomers. This new composite displays both a record-low elastic modulus

    Tacky Elastomers to Enable Tear-Resistant and Autonomous Self-Healing Semiconductor Composites

    Get PDF
    Mechanical failure of π-conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack propagation. Here, the first tear-resistant and room-temperature self-healable semiconducting composite is presented, consisting of conjugated polymers and butyl rubber elastomers. This new composite displays both a record-low elastic modulus

    Observation of Fundamental Mechanisms in Compression-Induced Phase Transformations Using Ultrafast X-ray Diffraction

    Get PDF
    As theoretically hypothesized for several decades in group IV transition metals, we have discovered a dynamically stabilized body-centered cubic (bcc) intermediate state in Zr under uniaxial loading at sub-nanosecond timescales. Under ultrafast shock wave compression, rather than the transformation from alpha-Zr to the more disordered hex-3 equilibrium omega-Zr phase, in its place we find the formation of a previously unobserved nonequilibrium bcc metastable intermediate. We probe the compression-induced phase transition pathway in zirconium using time-resolved sub-picosecond x-ray diffraction analysis at the Linac Coherent Light Source. We also present molecular dynamics simulations using a potential derived from first-principles methods which independently predict this intermediate phase under ultrafast shock conditions. In contrast with experiments on longer timescale (> 10 ns) where the phase diagram alone is an adequate predictor of the crystalline structure of a material, our recent study highlights the importance of metastability and time dependence in the kinetics of phase transformations

    A Directed RNAi Screen Based on Larval Growth Arrest Reveals New Modifiers of C. elegans Insulin Signaling

    Get PDF
    Genes regulating Caenorhabditis elegans insulin/IGF signaling (IIS) have largely been identified on the basis of their involvement in dauer development or longevity. A third IIS phenotype is the first larval stage (L1) diapause, which is also influenced by asna-1, a regulator of DAF-28/insulin secretion. We reasoned that new regulators of IIS strength might be identified in screens based on the L1 diapause and the asna-1 phenotype. Eighty- six genes were selected for analysis by virtue of their predicted interaction with ASNA-1 and screened for asna-1-like larval arrest. ykt-6, mrps-2, mrps-10 and mrpl-43 were identified as genes which, when inactivated, caused larval arrest without any associated feeding defects. Several tests indicated that IIS strength was weaker and that insulin secretion was defective in these animals. This study highlights the role of the Golgi network and the mitochondria in insulin secretion and provides a new list of genes that modulate IIS in C. elegans

    Targeting cholesterol-rich microdomains to circumvent tamoxifen-resistant breast cancer

    Get PDF
    Adjuvant treatment with tamoxifen substantially improves survival of women with estrogen-receptor positive (ER+) tumors. Tamoxifen resistance (TAMR) limits clinical benefit. RRR alpha tocopherol ether-linked acetic acid analogue (alpha-TEA) is a small bioactive lipid with potent anticancer activity. We evaluated the ability of alpha-TEA in the presence of tamoxifen to circumvent TAMR in human breast cancer cell lines. Methods: Two genotypically matched sets of TAM-sensitive (TAMS) and TAM-resistant (TAMR) human breast cancer cell lines were assessed for signal-transduction events with Western blotting, apoptosis induction with Annexin V-FITC/PI assays, and characterization of cholesterol-rich microdomains with fluorescence staining. Critical involvement of selected mediators was determined by using RNA interference and chemical inhibitors. Results: Growth-factor receptors (total and phosphorylated forms of HER-1 and HER-2), their downstream prosurvival mediators pAkt, pmTOR, and pERK1/2, phosphorylated form of estrogen receptor-alpha (pER-alpha at Ser-167 and Ser-118, and cholesterol-rich lipid microdomains were highly amplified in TAMR cell lines and enhanced by treatment with TAM. alpha-TEA disrupted cholesterol-rich microdomains, acted cooperatively with TAM to reduce prosurvival mediators, and induced DR5-mediated mitochondria-dependent apoptosis via an endoplasmic reticulum stress-triggered pro-death pJNK/CHOP/DR5 amplification loop. Furthermore, methyl-beta-cyclodextrin (M beta CD), a chemical disruptor of cholesterol rich microdomains, acted cooperatively with TAM to reduce prosurvival mediators and to induce apoptosis. Conclusions: Data for the first time document that targeting cholesterol-rich lipid microdomains is a potential strategy to circumvent TAMR, and the combination of alpha-TEA + TAM can circumvent TAMR by suppression of prosurvival signaling via disruption of cholesterol-rich lipid microdomains and activation of apoptotic pathways via induction of endoplasmic reticulum stress.Clayton Foundation for ResearchCenter for Molecular and Cellular Toxicology at the University of TexasNIEHS/NIH T32 ES07247Nutritional Science
    corecore