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A B S T R A C T   

Objectives: Effective therapy for non–small-cell lung cancer (NSCLC) depends on morphological and genomic 
classification, with comprehensive screening for guideline-recommended biomarkers critical to guide treatment. 
Companion diagnostics, which provide robust genotyping results, represent an important component of 
personalized oncology. We evaluated the clinical validity of Guardant360 CDx as a companion diagnostic for 
sotorasib for detection of KRAS p.G12C, an important oncogenic NSCLC driver mutation. 
Materials and Methods: KRAS p.G12C was tested in NSCLC patients from CodeBreaK100 (NCT03600833) in 
pretreatment plasma samples using Guardant360 CDx liquid biopsy and archival tissue samples using ther-
ascreen® KRAS RGQ polymerase chain reaction (PCR) kit tissue testing. Matched tissue and plasma samples were 
procured from other clinical trials or commercial vendors, and results were compared. Demographics and clinical 
characteristics and objective response rate (ORR) were evaluated. 
Results: Of 126 CodeBreaK patients, 112 (88.9%) were tested for KRAS p.G12C mutations with Guardant360 CDx. 
Among 189 patients in the extended analysis cohort, the positive and negative percent agreement (95% CI) for 
Guardant360 CDx plasma testing relative to therascreen® KRAS RGQ PCR kit tissue testing were 0.71 (0.62, 0.79) 

Abbreviations: AAAS, assay agreement analysis set; ALK, anaplastic lymphoma kinase; CDx, companion diagnostics; CI, confidence interval; cfDNA, cell-free DNA; 
ctDNA, circulating tumor DNA; CR, complete response; DCR, disease control rate; DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; EGFR, 
epidermal growth factor receptor; FDA, US Food and Drug Administration; G360, Guardant360; GCLP, Good Clinical Laboratory Practice; GTP, guanosine-5′- 
triphosphate; IQR, interquartile range; KRAS, Kirsten rat sarcoma; LBx, liquid biopsy; NGS, next-generation sequencing; NPA, negative percentage agreement; 
NSCLC, non–small-cell lung cancer; ORR, objective response rate; PCR, polymerase chain reaction; PD, progressive disease; PD-1, programmed cell death protein-1; 
PD-L1, programmed cell death protein ligand-1; PPA, positive percentage agreement; PR, partial response; QC, quality control; RECIST, Response Evaluation Criteria 
in Solid Tumors; RGQ, Rotor-Gene-Q MDx instrument; ROS1, receptor tyrosine kinase; SAAS, sensitivity analysis prevalence sub-study; SD, stable disease; SMM, sum 
of mutant molecules; TAT, turnaround time; TTR, time to response. 
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and 1.00 (0.95, 1.00), respectively; overall percent agreement (95% CI) was 0.82 (0.76, 0.87). TP53 co-mutations 
were the most common regardless of KRAS p.G12C status (KRAS p.G12C–positive, 53.4%; KRAS p. 
G12C–negative, 45.5%). STK11 was co-mutated in 26.1% of KRAS p.G12C–positive samples. The ORR was 
similar among patients selected by plasma and tissue testing. 
Conclusion: Comprehensive genotyping for all therapeutic targets including KRAS p.G12C is critical for man-
agement of NSCLC. Liquid biopsy using Guardant360 CDx has clinical validity for identification of patients with 
KRAS p.G12C–mutant NSCLC and, augmented by tissue testing methodologies as outlined on the approved 
product label, will identify patients for treatment with sotorasib.   

1. Introduction 

In patients with non–small-cell lung cancer (NSCLC), the treatment 
paradigm has markedly evolved with the emergence of therapies that 
target specific molecular abnormalities [1–3], such as activating alter-
ations in epidermal growth factor receptor (EGFR), anaplastic lym-
phoma kinase (ALK), and proto-oncogene 1, receptor tyrosine kinase 
(ROS1) [4,5]. An important target for therapy, and one of the most 
frequently mutated oncogenes in NSCLC [6,7], is the Kirsten rat sarcoma 
viral oncogene homology p.G12C mutation (KRAS G12C), which is 
found in approximately 13% of all patients with NSCLC [8,9] and 
associated with decreased overall survival compared to KRAS wild-type 
[10,11]. Sotorasib, a covalent small-molecule inhibitor of KRASG12C, 
was recently approved for adults with KRAS G12C–mutated locally 
advanced or metastatic NSCLC [12,13], and phase 1 and 2 studies 
support its tolerability and antitumor efficacy [14,15]. 

As effective treatment in NSCLC depends on genomic classification of 
individual patients [5,16], companion diagnostics (CDx) represent a 
category of in vitro diagnostic devices that provide results needed for the 
safe and effective use of a corresponding therapy and, as such, are a 
critical component of personalized medicine [17–19]. Failure to 
correctly identify actionable mutations can result in selection of sub-
optimal treatment options, delays in administration of more appropriate 
treatment, and shortened patient survival [20–22]. 

Despite this, insufficient genotyping remains common in NSCLC. 
Although testing rates have improved over time for commonly targeted 
genes such as EGFR, ALK, and ROS1, testing rates vary widely world-
wide, and improvements in testing frequency, completeness, and 
rapidity are critically needed [16]. The reasons for incomplete testing 
are numerous and include tissue insufficiency, use of single-biomarker 
tests, suboptimal physician education, lengthy turnaround times (TAT) 
required for some test results, and incomplete and inconsistent health-
care payer coverage for such testing [16]. 

Comprehensive liquid biopsy (LBx) addresses some of these limita-
tions. In certain settings, LBx may provide a more viable testing option 
when key elements for clinical decision-making are well-balanced, 
including testing sensitivity and country-specific differences in molec-
ular testing availability, TAT, and cost. Most LBx are performed using a 
whole blood sample collected in a specialized blood collection tube that 
preserves cell-free DNA (cfDNA) at ambient temperatures for up to 7 
days, allowing facile worldwide collection and shipment to testing lab-
oratories even from sites without any in-house laboratory or sample 
processing facilities [23,24]. Because circulating tumor DNA (ctDNA) 
typically comprises only a small minority of all cfDNA present in cir-
culation, even in advanced cancer patients, the sensitivity of an LBx test 
is important [23]. Previous studies have shown that LBx tests for KRAS 
mutations correlate with tissue biopsy results, with approximately 85%– 
95% overall concordance depending on the tumor type and timing of the 
test, and driven by higher specificity and lower sensitivity [25–27]. 

The objective of this study was to clinically validate the use of 
Guardant360 CDx, a US Food and Drug Administration (FDA)–approved 
[28] next-generation sequencing (NGS)–based LBx test, as a CDx to 
identify patients with NSCLC and KRAS p.G12C who are eligible for 
sotorasib therapy. 

2. Materials and methods 

The phase 2 multicenter, open-label clinical trial evaluating the ef-
ficacy of sotorasib in patients with advanced solid tumors (phase 2: 
NSCLC; CodeBreaK100; NCT03600883) has been previously described 
[15,29]. Briefly, adults ≥ 18 years of age were eligible for participation 
if they had Response Evaluation Criteria in Solid Tumors (RECIST) 
version 1.1–measurable, pathologically documented, locally advanced 
or metastatic malignancy with KRAS p.G12C. Tumor mutation status 
was confirmed prior to enrollment by central tissue testing with ther-
ascreen® KRAS RGQ polymerase chain reaction (PCR) kit (KRAS RGQ 
PCR kit; Qiagen, Germantown, MD, USA). Patients had to provide 
archival tumor tissue samples (collected within 5 years) or undergo 
pretreatment tumor biopsy. Patients were included if they had pro-
gressed after anti–PD-1 or anti–PD-L1 immunotherapy and/or platinum- 
based combination chemotherapy. Patients were not eligible if they had 
active brain metastases from non-brain tumors, a myocardial infarction 
within 6 months of study start, or any gastrointestinal disease precluding 
oral medication. The study was designed to assess the efficacy, safety, 
and tolerability of sotorasib. 

Patients enrolled in the phase 2 trial with informed consent for blood 
sample use for diagnostic development were included in this analysis. 
The primary endpoint was objective response rate (ORR) and secondary 
endpoints included disease control rate (DCR) and duration of response 
(DOR) [15]. 

2.1. Diagnostic study populations 

Pretreatment plasma samples were collected from patients enrolled 
in the phase 2 NSCLC cohort of CodeBreaK100 (NCT03600833). Whole 
blood samples were drawn and plasma was isolated and stored frozen for 
5 to 12 months until testing. Matched tissue and plasma samples were 
procured from patients in other clinical trials or from commercial ven-
dors using similar selection criteria; the archival tumor tissue samples 
were required to have been collected within 5 years of the matched 
plasma sample. Patient cohorts were defined as outlined in Fig. 1. 

2.2. Study objectives 

The primary objective of the current analysis was to establish the 
clinical validity of Guardant360 CDx using data and samples from the 
CodeBreaK100 (NCT03600883) study. The secondary objectives were to 
assess the concordance between KRAS p.G12C mutation status deter-
mined by the therascreen® KRAS RGQ PCR kit and Guardant360 CDx in 
patients with NSCLC; to assess representativeness of the Guardant360 
CDx–positive cohort compared with the full analysis group; and to assess 
DOR, DCR, and time to response (TTR) in patients with KRAS p. 
G12C–mutant NSCLC as detected by Guardant360 CDx relative to the 
full analysis group. 

2.3. Description of testing processes 

A designated central laboratory (Neogenomics, Houston, Texas) was 
used to determine KRAS p.G12C status for each tissue sample. De- 
identified archival formalin-fixed, paraffin-embedded tissue samples 
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were shipped at ambient temperature and stored until tested. Mutation 
status was assessed using the therascreen® KRAS RGQ PCR kit in 
accordance with the laboratory standard operating procedures, Good 
Clinical Laboratory Practice (GCLP) guidelines, and manufacturer pro-
tocols. De-identified plasma samples were shipped from the central 
laboratory to Guardant Health (Redwood City, CA, USA), where KRAS p. 
G12C mutation status was determined. De-identified whole blood sam-
ples were processed to plasma and stored at − 80 ◦C until testing. Mu-
tation status was assessed using Guardant360 CDx in accordance with 
the laboratory standard operating procedures, GCLP guidelines, and 
manufacturer protocols. 

2.4. Tumor DNA shedding analyses 

Patients were grouped into categories based on the presence or 
absence of plasma tumor DNA and whether KRAS p.G12C was detected. 
The groups were 1) Non–G12C Shedder, which included patients in 
whom tumor DNA variants were reported but KRAS p.G12C not detec-
ted; 2) G12C Shedder, in which KRAS p.G12C was detected; 3) Non- 
Shedder, in whom no tumor DNA variants were reported from a sam-
ple passing laboratory quality control (QC) checks; and 4) Fail, which 
included patients with samples failing QC. Tumor DNA content and 
cfDNA content (ng) were compared between these groups to charac-
terize Non–G12C Shedders and G12C Shedders. Tumor DNA content 
within the plasma cfDNA was represented by the sum of mutant mole-
cules (SMM), where mutant molecules were defined as each variant’s 
allele frequency multiplied by the corresponding sequencing depth. 
Because allele frequency was not reported for copy number variations, 
they did not contribute to the SMM calculation. The Kruskal-Wallis test 
was used for comparisons of SMM between patient groups. 

2.5. Statistical analyses 

Based on an initial enrollment estimate of 105 patients, and 75% of 
patients being tissue-positive based on the Guardant360 CDx test, the 
study had a power of 90% to exclude a benchmark standard of care ORR 
of 23%. Demographics and clinical characteristics for the Guardant360 
CDx–evaluable cohort and Guardant360 CDx–unknown cohort were 
compared using a chi-square test. Imbalance among baseline covariates 
was not adjusted for due to small sample sizes. The ORR for the Guar-
dant360 CDx–positive population was considered acceptable if the 
lower limit of its 95% confidence interval (CI) was greater than 22%, the 
bridging study size–adjusted equivalent of the 23% benchmark ORR 
reported in the phase 2 study of sotorasib. 

To assess an estimate of the efficacy of sotorasib in patients that were 
Guardant360 CDx–positive, regardless of their underlying tumor tissue 
KRAS p.G12C status, a supplementary population of 132 patients with 
NSCLC was investigated. 

Sensitivity analysis was undertaken based on a “missing at random” 
approach [30] to account for patients without a valid Guardant360 CDx 
result. Guardant360 CDx results were simulated for this population, and 
the primary efficacy analysis repeated using these imputed results. The 
ORR for a hypothetical Guardant360 CDx–positive intended use popu-
lation was estimated as a weighted average of two ORR, calculated as 
follows: 

Observed ORR*P(Tissue+/G360+) + Postulated ORR*P(Tissue–| 
G360+) 

where the observed ORR was from the primary analysis and repre-
sents the Guardant360 CDx–positive tissue-positive population, the two 
postulated ORRs for the Guardant360 CDx–positive tissue-negative 
population were the observed ORR and 0, and the weighting was 
determined based on the P(Tissue+) and the positive percentage 
agreement (PPA) and negative percentage agreement (NPA) of Guar-
dant360 CDx relative to the therascreen® KRAS RGQ PCR test; P 
(Tissue+) indicates the probability of a positive tissue test, and P 
(Tissue–|G360+) indicates the probability of a negative tissue test in 
patients with a positive Guardant360 CDx test result. Concordance re-
sults are presented in a 2×2 table with 95% CIs. 

3. Results 

3.1. Patient population and summary of KRAS p.G12C mutation status 

Overall, 126 patients with NSCLC were enrolled in the phase 2 
portion of the study and comprised the Full Analysis Set (Fig. 1). Among 
these, samples from 112 patients (88.9%) were tested for KRAS p.G12C 
mutations with Guardant360 CDx (Guardant360 Analysis Set). Testing 
was successful in 109 patients (86.5%; Guardant360 Evaluable cohort). 
Overall, 78 patients (61.9%) in the Guardant360 Analysis Set tested 
positive for the KRAS p.G12C mutation (Guardant360 Positive cohort). 
In addition, matched tissue and plasma samples procured from 132 
patients with NSCLC for the sensitivity analysis prevalence sub-study 
(Assay Agreement Analysis Set; AAAS cohort) were included. Among 
these, samples from 128 patients were tested with both Guardant360 
CDx and therascreen® KRAS RGQ PCR kit. Overall, 189 patients had 
valid Guardant360 CDx and therascreen® KRAS RGQ PCR kit results. 
Testing failures for Guardant360 CDx were due to insufficient cfDNA. 
Although not a device “failure,” the failure to identify mutations could 

Fig. 1. Overview of patients in each of the diagnostic study cohorts.*Positive for KRAS p.G12C. CDx, companion diagnostic; G360, Guardant360; KRAS, Kirsten rat 
sarcoma; SAAS, sensitivity analysis prevalence sub-study. 
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only be identified after testing. Testing failures for the therascreen® 
KRAS RGQ PCR kit were mainly due to poor tissue quality or failure to 
identify tumor cells. Age of the tissue samples did not appear to affect 
testing outcomes (Supplemental Table S1). 

3.2. Baseline demographics and disease characteristics 

Baseline demographic and clinical characteristics were similar 
among the diagnostic cohorts (Table 1). The median age ranged between 
63 years to 64 years. Eastern Cooperative Oncology Group performance 
status of 1 was reported for most patients in all cohorts. Most patients 
(94.9% in the Guardant360 Positive cohort, 100% in the Guardant360 
Negative cohort) had metastatic disease, with bone being the most 
common site of metastasis. Although most patients had stage IV disease 
at initial diagnosis, the proportion of patients in the Guardant360 -
Negative cohort with prior stage I (n = 4/31 [12.9%]) and II (n = 6/31 
[19.4%]) disease was numerically higher compared with the other co-
horts (<10% and <12%, respectively). Furthermore, tumor tissue sur-
face area and age were not significantly different among groups with 
concordant or discordant test results between tissue and LBx (Supple-
mental Table S2). 

3.3. Agreement between Guardant360 CDx and tissue testing 

The concordance of plasma and tissue samples for the extended 
cohort, including matched tissue and plasma samples from patients in 
other clinical trials or from commercial vendors, is summarized in 
Table 2. For the 189 patients in the AAAS cohort, the PPA and NPA (95% 
CI) for Guardant360 CDx relative to therascreen® KRAS RGQ PCR test 
were 0.71 (0.62, 0.79) and 1.00 (0.95, 1.00), respectively. The overall 
percent agreement (95% CI) was 0.82 (0.76, 0.87). 

In the phase 2 trial, Non-Shedders (no variants detected in a sample 
passing QC) had lower cfDNA than Non–G12C Shedders and G12C 
Shedders, as expected (Fig. 2A). In the phase 2 trial, higher ctDNA levels, 
as defined by the SMM, were detected in G12C Shedders (ie, KRAS p. 
G12C–positive samples) versus the Non–G12C Shedders (ie, KRAS p. 
G12C–negative samples) from the phase 2 trial (Fig. 2B). One Non–G12C 
Shedder only had one copy number variation reported, and a place-
holder value of 0.5 SMM was use for illustrative purposes because the 
SMM calculation does not include copy number variations. Median SMM 
differed between Non–G12C Shedders and G12C Shedders (18 and 269, 
respectively; P = 2.8×10− 7, Kruskal-Wallis test). 

3.4. Prevalence of co-mutations 

Panel-wide data were analyzed to determine the presence of other 
mutations in the combined NSCLC population (phase 2 clinical trial and 
prevalence sub-study) used in this study. A total of 231 subjects with 
valid Guardant360 CDx LBx results were included (KRAS p.G12C 
detected, n = 88; KRAS p.G12C not detected, n = 143). Differences in 
the baseline demographics and clinical characteristics between the 
phase 2 clinical trial and prevalence sub-study cohorts were present 
(Supplemental Table S3). Specifically, the sub-study had a high pro-
portion of patients who were male (phase 2 trial, n = 56 [51.4%]; sub- 
study, n = 91 [74.6%]) and fewer patients who had received prior anti- 
cancer therapy (phase 2 trial, n = 109 [100%]; sub-study, n = 12 
[9.8%]). The top five genes with an identified mutation in KRAS p. 
G12C–positive and KRAS p.G12C–negative samples are listed in Table 3. 
Mutations in TP53 were most commonly found in the NSCLC cohort, 
irrespective of the KRAS p.G12C status. STK11 was co-mutated in 26.1% 
of the KRAS p.G12C–positive patients. Mutations in TP53 and STK11 
occurred in 47 and 22 patients, respectively. Based on the odds ratios for 
objective response, there was no association between outcome and co- 
mutation status (mutated TP53, 0.86 [P = 0.71]; mutated STK11, 0.71 
[P = 0.49]). Among actionable mutations, MET and EGFR were preva-
lent in KRAS p.G12C–positive patients, whereas coalteration of ALK and 

Table 1 
Baseline demographics and clinical characteristics by diagnostic cohort.*   

Full 
Analysis Set 
(n = 126) 

G360 
Evaluable 
Cohort (n 
= 109) 

G360 
Positive 
Cohort† (n 
= 78) 

G360 
Negative 
Cohort (n 
= 31) 

Age, median (IQR) 63.5 
(56.0–70.0) 

63.0 
(56.0–70.0) 

63.0 
(56.0–72.0) 

64.0 
(55.0–69.0) 

Female, n (%) 63 (50.0) 53 (48.6) 42 (53.8) 11 (35.5) 
Race, n (%) 

White 103 (81.7) 87 (79.8) 65 (83.3) 22 (71.0) 
Asian 19 (15.1) 19 (17.4) 11 (14.1) 8 (25.8) 
Other 4 (3.2) 3 (2.8) 2 (2.6) 1 (3.2) 

Region, n (%) 
North America 79 (62.7) 67 (61.5) 50 (64.1) 17 (54.8) 
Europe 30 (23.8) 25 (22.9) 18 (23.1) 7 (22.6) 
Asia 12 (9.5) 12 (11.0) 7 (9.0) 5 (16.1) 
Rest of the 

world 
5 (4.0) 5 (4.6) 3 (3.8) 2 (6.5) 

ECOG status at baseline, n (%) 
0 38 (30.2) 33 (30.3) 20 (25.6) 13 (41.9) 
1 88 (69.8) 76 (69.7) 58 (74.4) 18 (58.1) 

Prior line of anti-cancer therapy 
1 54 (42.9) 46 (42.2) 33 (42.3) 13 (41.9) 
2 44 (34.9) 37 (33.9) 28 (35.9) 9 (29.0) 
3 28 (22.2) 26 (23.9) 17 (21.8) 9 (29.0) 

Type of prior anti-cancer therapy, n (%) 
Chemotherapy 115 (91.3) 101 (92.7) 73 (93.6) 28 (90.3) 
Immunotherapy 116 (92.1) 100 (91.7) 72 (92.3) 28 (90.3) 
Platinum-based 

chemotherapy and 
anti–PD-1/PD-L1 

102 (81.0) 89 (81.7) 66 (84.6) 23 (74.2) 

Targeted 
biologics 

30 (23.8) 28 (25.7) 17 (21.8) 11 (35.5) 

Targeted small 
molecules 

9 (7.1) 6 (5.5) 3 (3.8) 3 (9.7) 

Other 1 (0.8) 1 (0.9) 1 (1.3) 0 (0.0) 
Disease stage at initial diagnosis, n (%) 

I 11 (8.7) 10 (9.2) 6 (7.7) 4 (12.9) 
II 14 (11.1) 12 (11.0) 6 (7.7) 6 (19.4) 
III 22 (17.5) 21 (19.3) 19 (24.4) 2 (6.5) 
IV 78 (61.9) 65 (59.6) 46 (59.0) 19 (61.3) 
Missing 1 (0.8) 1 (0.9) 1 (1.3) 0 (0.0) 

Smoking history, n (%) 
Never smoked 6 (4.8) 6 (5.5) 4 (5.1) 2 (6.5) 
Current smoker 15 (11.9) 12 (11.0) 7 (9.0) 5 (16.1) 
Former smoker 102 (81.0) 88 (80.7) 66 (84.6) 22 (71.0) 
Missing 3 (2.4) 3 (2.8) 1 (1.3) 2 (6.5) 

Histopathology type, n (%) 
Squamous 1 (0.8) 1 (0.9) 1 (1.3) 0 (0.0) 
Nonsquamous 125 (99.2) 108 (99.1) 77 (98.7) 31 (100.0) 

Metastatic, n (%) 
Yes 122 (96.8) 105 (96.3) 74 (94.9) 31 (100.0) 
No 4 (3.2) 4 (3.7) 4 (5.1) 0 (0.0) 

Common metastases, n (%) 
Liver 26 (20.6) 19 (17.4) 17 (21.8) 2 (6.5) 
Brain 26 (20.6) 21 (19.3) 17 (21.8) 4 (12.9) 
Bone 61 (48.4) 51 (46.8) 41 (52.6) 10 (32.3) 

Best response to last prior line of therapy, n (%) 
CR 1 (0.8) 1 (0.9) 1 (1.3) 0 (0.0) 
PR 12 (9.5) 11 (10.1) 9 (11.5) 2 (6.5) 
SD 33 (26.2) 28 (25.7) 19 (24.4) 9 (29.0) 
PD 48 (38.1) 43 (39.4) 33 (42.3) 10 (32.3) 
Unknown/ 

unevaluable/ 
missing 

32 (25.4) 26 (23.9) 16 (20.5) 10 (32.3) 

CR, complete response; ECOG, Eastern Cooperative Oncology Group; G360, 
Guardant360; IQR, interquartile range; PD, progressive disease; PD-1/PD-L1, 
programmed cell death protein-1/programmed cell death protein ligand-1; PR, 
partial response; SD, stable disease. 

* Cohorts defined in Fig. 1. 
† Positive for KRAS p.G12C. 
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ROS1 with KRAS p.G12C was not seen. 

3.5. Efficacy outcomes 

The ORR (95% CI; patients with objective response/all patients in 
dataset) for all patients was 37.1% (28.6%, 46.2%; n = 46/124) in the 
Full Analysis Set, 36.4% (25.7%, 48.1%; n = 28/77) in the Guardant360 
Positive cohort, and 46.7% (28.3%, 65.7%; n = 14/30) in the Guar-
dant360 Negative cohort (Table 4; Supplementary Fig. 1). Rates of PD, 
SD, and PR were similar among the cohorts (Supplementary Fig. 1), with 
SD being the most common outcome (Full Analysis Set, n = 54/124 
[43.5%]; Guardant360 Evaluable, n = 46/107 [43.0%]; Guardant360 
Positive, n = 32/77 [41.6%]; Guardant360 Negative, n = 14/30 
[46.7%]). DCR (95% CI; patients with disease control/all patients in 
dataset) was 80.6% (72.6%, 87.2%; n = 100/124) in the Full Analysis 
Set and 77.9% (67.0%, 86.6%; n = 60/77) in the Guardant360 Positive 
cohort. Among responders, DOR was ≥ 3 months in 38/46 (82.6%) 
patients in the Full Analysis Set and 24/28 (85.7%) patients in the 
Guardant360 Positive cohort; DOR was ≥ 6 months in 28/46 (60.9%) 
and 15/28 (53.6%) patients in the Full Analysis Set and Guardant360 
Positive cohort, respectively. Of the four cohorts, DOR ≥ 3 months 
among responders was numerically highest in the Guardant360 Positive 
cohort (n = 24/28 [85.7%]), whereas DOR ≥ 6 months was numerically 
highest in the Guardant360 Negative (n = 9/14 [64.3%]) cohort. The 
median time to objective response was similar among all cohorts. 

4. Discussion 

Accurate and timely detection of oncogenic driver mutations con-
tinues to be critically important in the management of NSCLC patients 
[5]. In the current study, the primary endpoint for determining clinical 
validity was the ORR of Guardant360 CDx–selected patients, which was 
similar to that of patients selected by tissue testing. Key secondary 
endpoints of DOR and median time to objective response were also 
similar between populations (Table 4). Additionally, good concordance 
was observed between blood and tissue testing, consistent with other 
studies assessing concordance of tissue- and blood-derived samples for 

KRAS mutations [25]. This observation demonstrates that patients with 
KRAS p.G12C–mutant NSCLC may be similarly and effectively treated 
with sotorasib irrespective of the testing modality or analyte by which 
these patients were identified, and builds on the results of previous 
studies in which patients selected for targeted therapy by LBx demon-
strated similar outcomes to those selected by tissue testing. For example, 
patients with NSCLC and EGFR mutations identified by tissue or cfDNA 
demonstrated similar clinical benefit from osimertinib as first-line 
therapy and in later lines [31–33]. Concordance between tissue and 
LBx testing for EGFR driver mutations was high; however, LBx demon-
strated superiority in the detection of the EGFR T790M acquired resis-
tance mutation. These data demonstrate that LBx may identify 
biomarkers that could be missed due to issues of tissue adequacy. Similar 
findings have been observed in NSCLC with MET exon 14-skipping and 
BRAF mutations and in gastrointestinal cancers [34–36]. To assess the 
clinical validity of Guardant360 CDx to identify KRAS p.G12C–positive 
patients, a clinical trial dataset enriched with patients with KRAS p. 
G12C disease was used. An additional cohort from an unselected pop-
ulation matching the intent-to-treat population of the clinical study 
provided a control group and enabled a sensitivity analysis to assess the 
validity of Guardant360 CDx to accurately exclude KRAS p. 
G12C–negative patients. Although differences between the clinical trial 
and unselected patient population were present, we do not anticipate 
that these would affect the conclusions regarding the clinical validity of 
Guardant360 CDx. 

The primary limitation of LBx is that not all tumors shed detectable 
ctDNA into circulation. In the current study, 30% of tissue-positive pa-
tients were negative by LBx; similarly, up to 33% of patients with EGFR- 
activating mutations were missed in previous studies [37]. No clinical or 
pathological factors were identified in this study that were significantly 
linked to ctDNA shedding or non-shedding tumors. As such, and similar 
to expert consensus guidelines for EGFR testing [38], it is important to 
reflex test all patients who are negative for all driver mutations on LBx 
by an approved tissue testing methodology to ensure false negatives on 
LBx are not overlooked [37]. However, previous studies have shown that 
reliance on tissue genotyping alone may miss a substantial proportion of 
patients [31–36]. Indeed, multiple prospective studies comparing 
biomarker discovery rates between LBx and tissue genotyping in NSCLC 
patients have shown that LBx identifies similar or higher numbers of 
biomarker-positive patients in all-comer populations relative to tissue 
testing, with the increased genotyping success rate of LBx being 
balanced by the lack of tumor shedding [31–33]. Without the need for 
scheduling and performing the biopsy and tissue processing, it would be 
expected that LBx would typically deliver results faster than tissue 
genotyping, as supported by results from a recent study in NSCLC (LBx 
TAT of 9 days versus 15 days for tissue testing [P < 0.001]) [39]), 
allowing treatment decisions to be made more frequently with full 
genotyping information available [16,40]. The LBx testing landscape 
continues to evolve with efforts to augment assay sensitivity and spec-
ificity, as well as the increasing number of actionable mutations for 
targeted therapy. 

A benefit of comprehensive NGS LBx testing is the ability to detect 
mutations that may either be linked to or be mutually exclusive from 
KRAS p.G12C. A recent study reported multiple and diverse acquired 
mutations that confer resistance to KRASG12C inhibitors [41]. In addition 
to allowing a personalized approach to treatment of NSCLC, information 
regarding the presence of certain mutations can also be used to identify 
potential mechanisms of resistance and inform potential treatment 
combination strategies. In the case of KRAS p.G12C, we observed two 
primary co-mutated genes, TP53 and STK11, which may be associated 
with poor survival in KRAS-mutated patients [42]. The current study 
recapitulates previous findings of consistent sotorasib response across 
molecular subgroups of commonly mutated genes, including co-mutated 
TP53 and co-mutated STK11. Due to the heterogeneity inherent in 
samples from patients with NSCLC and the increasing number of treat-
ment options available, a variety of combination studies are underway 

Table 2 
Concordance between Guardant360 CDx test and tissue testing.   

therascreen® KRAS 
RGQ PCR Kit Positive 

therascreen® KRAS 
RGQ PCR Kit Negative 

Total 

Guardant360 CDx 
Positive, n (%) 

82 (70.7) 0 (0.0) 82 
(43.4) 

Guardant360 CDx 
Negative, n (%) 

34 (29.3) 73 (100.0) 107 
(56.6) 

Positive percent 
agreement* (95% 
CI) 

0.71 (0.62, 0.79) 

Negative percent 
agreement† (95% 
CI) 

1.00 (0.95, 1.00) 

Overall percent 
agreement‡ (95% 
CI) 

0.82 (0.76, 0.87) 

AAAS, assay agreement analysis set; CI, confidence interval; CDx, companion 
diagnostic; PCR, polymerase chain reaction; RGQ, Rotor-Gene-Q MDx 
instrument. 

* Number of patients with both Guardant360 CDx positive and therascreen® 
KRAS RGQ PCR Kit positive, divided by the number of patients with therascreen® 
KRAS RGQ PCR Kit positive alone in the AAAS. 

† Number of patients with both Guardant360 CDx negative and therascreen® 
KRAS RGQ PCR Kit negative, divided by the number of patients with ther-
ascreen® KRAS RGQ PCR Kit negative alone in the AAAS. 

‡ Number of patients with both Guardant360 CDx positive and therascreen® 
KRAS RGQ PCR Kit positive, or both Guardant360 CDx negative and ther-
ascreen® KRAS RGQ PCR Kit negative, divided by the number of patients in the 
AAAS. 
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with the goal of evaluating the efficacy of KRAS-targeting agents like 
sotorasib alone and in combination with other targeted therapies. A 
benefit of comprehensive NGS LBx testing is the ability to interrogate a 
panel of cancer-associated genes, including those with actionable mu-
tations with available targeted therapies [43], and may inform future 
strategies for combination therapy. 

The results reported herein are consistent with trends observed in 
other reports in NSCLC and other cancer types [7,44,45]. The discrep-
ancy in results obtained with Guardant360 CDx versus tissue testing in 
our study may be related to the difference in shedding of DNA in patients 
with the KRAS p.G12C mutation versus patients without KRAS p.G12C. 
Mechanisms of release may differ in patients harboring the KRAS p. 
G12C mutation, resulting in the higher SMM observed in this study [23]. 
Outcomes associated with shedding status may also merit further ex-
amination in studies with a larger dataset. 

Comprehensive genotyping is critical for proper management of 
NSCLC patients. As KRASG12C is an emerging therapeutic target, it is 

equally critical that genotyping for this marker is validated and incor-
porated into all genotyping platforms. The current study shows that 
properly validated LBx, with patients with negative LBx results reflex 
tested using approved tissue testing, has clinical validity in the identi-
fication of patients with KRAS p.G12C–mutant NSCLC for treatment 
with sotorasib. 
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Table 3 
Prevalence of most common cancer-associated genes identified in KRAS p. 
G12C–positive versus KRAS p.G12C–negative patients by the Guardant360 CDx 
liquid biopsy test.  

Gene KRAS p.G12C–Positive 
Samples, % 

KRAS p.G12C–Negative 
Samples, % 

TP53  53.4  45.5 
STK11  26.1  11.2 
ATM  17.1  18.2 
MET*  13.6  7.7 
EGFR*  12.5  14.0 
No 

mutation  
0.0  16.8 

PIK3CA  6.8  11.9 
BRAF*  8.0  8.4 
RET*  4.6  0.7 
NTRK1*  3.4  1.4 
ALK*  1.1  1.4 
ROS1*  1.1  3.5 

CDx, companion diagnostic. 
Bold text indicates the top five most common genes in patients who were KRAS 
p.G12C–negative. 

* Genes with available targeted therapies. 

Table 4 
Efficacy endpoints with sotorasib according to Guardant360 CDx in all cohorts.  

Cohort,* n† Primary 
Endpoint 

Secondary Endpoints 

ORR, % 
(95% CI) 

DCR, % 
(95% 
CI) 

DOR ≥ 3 
mo,‡ n/ 
n1 (%) 

DOR ≥ 6 
mo,‡ n/ 
n1 (%) 

Median Time to 
Objective 
Response,‡ mo 
(IQR) 

Full Analysis 
Set (n =
124) 

37.1 
(28.6, 
46.2) 

80.6 
(72.6, 
87.2) 

38/46 
(82.6) 

28/46 
(60.9) 

1.4 (1.3, 2.7) 

G360 
Evaluable 
(n = 107) 

39.3 
(30.0, 
49.2) 

82.2 
(73.7, 
89.0) 

34/42 
(81.0) 

24/42 
(57.1) 

1.4 (1.3, 2.8) 

G360 
Positive§

(n = 77) 

36.4 
(25.7, 
48.1) 

77.9 
(67.0, 
86.6) 

24/28 
(85.7) 

15/28 
(53.6) 

1.4 (1.3, 2.7) 

G360 
Negative 
(n = 30) 

46.7 
(28.3, 
65.7) 

93.3 
(77.9, 
99.2) 

10/14 
(71.4) 

9/14 
(64.3) 

1.4 (1.2, 2.8) 

CI, confidence interval; CDx, companion diagnostic; DCR, disease control rate; 
DOR, duration of observed response; G360, Guardant360; IQR, interquartile 
range; ORR, objective response rate; RECIST 1.1, Response Evaluation Criteria in 
Solid Tumors version 1.1. 

* Cohorts defined in Fig. 1. 
† n is the number of patients who are in the cohort and received at least 1 dose 

of sotorasib, and have one or more measurable lesions at baseline as assessed by 
independent radiologic review using RECIST 1.1. 

‡ Calculated among number of responders (n1). 
§ Positive for KRAS p.G12C based on G360 liquid biopsy testing. 
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