34 research outputs found

    Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments

    Get PDF
    We investigated the diversity, spatial distribution, and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in sediment samples of different depths collected from a transect with different distances to mangrove forest in the territories of Hong Kong. Both the archaeal and bacterial amoA genes (encoding ammonia monooxygenase subunit A) from all samples supported distinct phylogenetic groups, indicating the presences of niche-specific AOA and AOB in mangrove sediments. The higher AOB abundances than AOA in mangrove sediments, especially in the vicinity of the mangrove trees, might indicate the more important role of AOB on nitrification. The spatial distribution showed that AOA had higher diversity and abundance in the surface layer sediments near the mangrove trees (0 and 10 m) but lower away from the mangrove trees (1,000 m), and communities of AOA could be clustered into surface and bottom sediment layer groups. In contrast, AOB showed a reverse distributed pattern, and its communities were grouped by the distances between sites and mangrove trees, indicating mangrove trees might have different influences on AOA and AOB community structures. Furthermore, the strong correlations among archaeal and bacterial amoA gene abundances and their ratio with NH4+, salinity, and pH of sediments indicated that these environmental factors have strong influences on AOA and AOB distributions in mangrove sediments. In addition, AOA diversity and abundances were significantly correlated with hzo gene abundances, which encodes the key enzyme for transformation of hydrazine into N2 in anaerobic ammonium-oxidizing (anammox) bacteria, indicating AOA and anammox bacteria may interact with each other or they are influenced by the same controlling factors, such as NH4+. The results provide a better understanding on using mangrove wetlands as biological treatment systems for removal of nutrients

    The multifunctional roles of vegetated strips around and within agricultural fields : A systematic map protocol.

    Get PDF
    Background: Agriculture and agricultural intensification can have significant negative impacts on the environment, including nutrient and pesticide leaching, spreading of pathogens, soil erosion and reduction of ecosystem services provided by terrestrial and aquatic biodiversity. The establishment and management of vegetated strips adjacent to farmed fields (including various field margins, buffer strips and hedgerows) are key mitigation measures for these negative environmental impacts and environmental managers and other stakeholders must often make decisions about how best to design and implement vegetated strips for a variety of different outcomes. However, it may be difficult to obtain relevant, accurate and summarised information on the effects of implementation and management of vegetated strips, even though a vast body of evidence exists on multipurpose vegetated strip interventions within and around fields. To improve the situation, we describe a method for assembling a database of relevant research relating to vegetated strips undertaken in boreo-temperate farming systems (arable, pasture, horticulture, orchards and viticulture). Methods: We will search 13 bibliographic databases, 1 search engine and 37 websites for stakeholder organisations using a predefined and tested search string that focuses on a comprehensive list of vegetated strip synonyms. Non-English language searches in Danish, Finnish, German, Spanish, and Swedish will also be undertaken using a web-based search engine. We will screen search results at title, abstract and full text levels, recording the number of studies deemed non-relevant (with reasons at full text). A systematic map database that displays the meta-data (i.e. descriptive summary information about settings and methods) of relevant studies will be produced following full text assessment. The systematic map database will be displayed as a web-based geographical information system (GIS). The nature and extent of the evidence base will be discussed

    Is word-level lexical stress sensitivity affected by downregulation to the left superior temporal gyrus using TMS?

    No full text
    This paper reports two experiments using Transcranial Magnetic Stimulation (TMS) to investigate whether word-level lexical stress involves the left superior temporal gyrus (STG) using a grammar classification task designed to elicit a typicality effect. Experiment 1 used text presented stimuli and, although was not able to elicit a typicality effect, found response times were significantly slower in the no TMS condition compared to when the, control, right PAR region was downregulated. In Experiment 2, speech was presented instead of text and accuracy and response times were similar across all three conditions. A lexical decision control task found evidence, from response time analysis, that the left STG and the right PAR were involved in word and nonword judgments. The discussion explores the findings relative to lexical stress and the role of cortical regions in word and response processing

    Low frequency repetitive transcranial magnetic stimulation to right parietal cortex disrupts perception of briefly presented stimuli

    Get PDF
    Right parietal cortex has recently been linked to the temporal resolution of attention. We therefore sought to investigate whether disruption to right parietal cortex would affect attention to visual stimuli presented for brief durations. Participants performed a visual discrimination task before and after 10 minutes rTMS (1Hz) to right or central parietal cortex as well as 20 minutes after the second block. Participants reported the spatial frequency of a masked Gabor patch presented for a brief duration of 60, 120 or 240ms. We calculated error magnitudes by comparing accuracy to a guessing model. We then compared error magnitudes to blocks with no stimulation, producing a measure of baselined performance. Baselined performance was poorer at longer stimulus durations after right parietal than central parietal stimulation, suggesting that right parietal cortex is involved in attention to briefly presented stimuli, particularly in situations where rapid accumulation of visual evidence is needed
    corecore