47 research outputs found
Irreversible Effects of Ivermectin on Adult Parasites in Onchocerciasis Patients in the Onchocerciasis Control Programme in West Africa
Ivermectin is an effective drug for the treatment of human onchocerciasis, a disease caused by the parasitic filarial nematode Onchocerca volvulus. When humans are treated, the microfilariae normally found in the skin are rapidly and very nearly completely eliminated. Nonetheless, after a delay, microfilariae gradually reappear in the skin. This study is concerned with the causes of this delay. Hypotheses are tested by comparing the results of model calculations with skin microfilaria counts collected from 114 patients during a trial of five annual treatments in the focus area of Asubende, Ghana. The results obtained strongly suggest that annual treatment with ivermectin causes an irreversible decline in microfilariae production of ∼30%/treatment. This result has important implications for public health strategies designed to eliminate onchocerciasis as a significant health hazar
Impact of ivermectin on onchocerciasis transmission: assessing the empirical evidence that repeated ivermectin mass treatments may lead to elimination/eradication in West-Africa
BACKGROUND: The Onchocerciasis Control Program (OCP) in West Africa has been closed down at the end of 2002. All subsequent control will be transferred to the participating countries and will almost entirely be based on periodic mass treatment with ivermectin. This makes the question whether elimination of infection or eradication of onchocerciasis can be achieved using this strategy of critical importance. This study was undertaken to explore this issue. METHODS: An empirical approach was adopted in which a comprehensive analysis was undertaken of available data on the impact of more than a decade of ivermectin treatment on onchocerciasis infection and transmission. Relevant entomological and epidemiological data from 14 river basins in the OCP and one basin in Cameroon were reviewed. Areas were distinguished by frequency of treatment (6-monthly or annually), endemicity level and additional control measures such as vector control. Assessment of results were in terms of epidemiological and entomological parameters, and as a measure of inputs, therapeutic and geographical coverage rates were used. RESULTS: In all of the river basins studied, ivermectin treatment sharply reduced prevalence and intensity of infection. Significant transmission, however, is still ongoing in some basins after 10–12 years of ivermectin treatment. In other basins, transmission may have been interrupted, but this needs to be confirmed by in-depth evaluations. In one mesoendemic basin, where 20 rounds of four-monthly treatment reduced prevalence of infection to levels as low as 2–3%, there was significant recrudescence of infection within a few years after interruption of treatment. CONCLUSIONS: Ivermectin treatment has been very successful in eliminating onchocerciasis as a public health problem. However, the results presented in this paper make it almost certain that repeated ivermectin mass treatment will not lead to the elimination of transmission of onchocerciasis from West Africa. Data on 6-monthly treatments are not sufficient to draw definitive conclusions
Feasibility of Onchocerciasis Elimination with Ivermectin Treatment in Endemic Foci in Africa: First Evidence from Studies in Mali and Senegal
The control of onchocerciasis, or river blindness, is based on annual or six-monthly ivermectin treatment of populations at risk. This has been effective in controlling the disease as a public health problem, but it is not known whether it can also eliminate infection and transmission to the extent that treatment can be safely stopped. Many doubt that this is feasible in Africa. A study was undertaken in three hyperendemic onchocerciasis foci in Mali and Senegal where treatment has been given for 15 to 17 years. The results showed that only few infections remained in the human population and that transmission levels were everywhere below postulated thresholds for elimination. Treatment was subsequently stopped in test areas in each focus, and follow-up evaluations did not detect any recrudescence of infection or transmission. Hence, the study has provided the first evidence that onchocerciasis elimination is feasible with ivermectin treatment in some endemic foci in Africa. Although further studies are needed to determine to what extent these findings can be extrapolated to other areas in Africa, the principle of onchocerciasis elimination with ivermectin treatment has been established
Modelling the elimination of river blindness using long-term epidemiological and programmatic data from Mali and Senegal
The onchocerciasis transmission models EPIONCHO and ONCHOSIM have been independently developed and used to explore the feasibility of eliminating onchocerciasis from Africa with mass (annual or biannual) distribution of ivermectin within the timeframes proposed by the World Health Organization (WHO) and endorsed by the 2012 London Declaration on Neglected Tropical Diseases (i.e. by 2020/2025). Based on the findings of our previous model comparison, we implemented technical refinements and tested the projections of EPIONCHO and ONCHOSIM against long-term epidemiological data from two West African transmission foci in Mali and Senegal where the observed prevalence of infection was brought to zero circa 2007–2009 after 15–17 years of mass ivermectin treatment. We simulated these interventions using programmatic information on the frequency and coverage of mass treatments and trained the model projections using longitudinal parasitological data from 27 communities, evaluating the projected outcome of elimination (local parasite extinction) or resurgence. We found that EPIONCHO and ONCHOSIM captured adequately the epidemiological trends during mass treatment but that resurgence, while never predicted by ONCHOSIM, was predicted by EPIONCHO in some communities with the highest (inferred) vector biting rates and associated pre-intervention endemicities. Resurgence can be extremely protracted such that low (microfilarial) prevalence between 1% and 5% can be maintained for 3–5 years before manifesting more prominently. We highlight that post-treatment and post-elimination surveillance protocols must be implemented for long enough and with high enough sensitivity to detect possible residual latent infections potentially indicative of resurgence. We also discuss uncertainty and differences between EPIONCHO and ONCHOSIM projections, the potential importance of vector control in high-transmission settings as a complementary intervention strategy, and the short remaining timeline for African countries to be ready to stop treatment safely and begin surveillance in order to meet the impending 2020/2025 elimination targets
A Research Agenda for Helminth Diseases of Humans: Health Research and Capacity Building in Disease-Endemic Countries for Helminthiases Control
Capacity building in health research generally, and helminthiasis research particularly, is pivotal to the implementation of the research and development agenda for the control and elimination of human helminthiases that has been proposed thematically in the preceding reviews of this collection. Since helminth infections affect human populations particularly in marginalised and low-income regions of the world, they belong to the group of poverty-related infectious diseases, and their alleviation through research, policy, and practice is a sine qua non condition for the achievement of the United Nations Millennium Development Goals. Current efforts supporting research capacity building specifically for the control of helminthiases have been devised and funded, almost in their entirety, by international donor agencies, major funding bodies, and academic institutions from the developed world, contributing to the creation of (not always equitable) North–South “partnerships”. There is an urgent need to shift this paradigm in disease-endemic countries (DECs) by refocusing political will, and harnessing unshakeable commitment by the countries' governments, towards health research and capacity building policies to ensure long-term investment in combating and sustaining the control and eventual elimination of infectious diseases of poverty. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. This paper discusses the challenges confronting capacity building for parasitic disease research in DECs, describes current capacity building strategies with particular reference to neglected tropical diseases and human helminthiases, and outlines recommendations to redress the balance of alliances and partnerships for health research between the developed countries of the “North” and the developing countries of the “South”. We argue that investing in South–South collaborative research policies and capacity is as important as their North–South counterparts and is essential for scaled-up and improved control of helminthic diseases and ultimately for regional elimination
Model-based geostatistical mapping of the prevalence of onchocerca volvulus in West Africa.
Background:
The initial endemicity (pre-control prevalence) of onchocerciasis has been shown to be an important determinant of the feasibility of elimination by mass ivermectin distribution. We present the first geostatistical map of microfilarial prevalence in the former Onchocerciasis Control Programme in West Africa (OCP) before commencement of antivectorial and antiparasitic interventions.
Methods and Findings:
Pre-control microfilarial prevalence data from 737 villages across the 11 constituent countries in the OCP epidemiological database were used as ground-truth data. These 737 data points, plus a set of statistically selected environmental covariates, were used in a Bayesian model-based geostatistical (B-MBG) approach to generate a continuous surface (at pixel resolution of 5 km x 5km) of microfilarial prevalence in West Africa prior to the commencement of the OCP. Uncertainty in model predictions was measured using a suite of validation statistics, performed on bootstrap samples of held-out validation data. The mean Pearson’s correlation between observed and estimated prevalence at validation locations was 0.693; the mean prediction error (average difference between observed and estimated values) was 0.77%, and the mean absolute prediction error (average magnitude of difference between observed and estimated values) was 12.2%. Within OCP boundaries, 17.8 million people were deemed to have been at risk, 7.55 million to have been infected, and mean microfilarial prevalence to have been 45% (range: 2–90%) in 1975.
Conclusions and Significance:
This is the first map of initial onchocerciasis prevalence in West Africa using B-MBG. Important environmental predictors of infection prevalence were identified and used in a model out-performing those without spatial random effects or environmental covariates. Results may be compared with recent epidemiological mapping efforts to find areas of persisting transmission. These methods may be extended to areas where data are sparse, and may be used to help inform the feasibility of elimination with current and novel tools
Macrofilaricides and onchocerciasis control, mathematical modelling of the prospects for elimination
BACKGROUND: In most endemic parts of the world, onchocerciasis (river blindness) control relies, or will soon rely, exclusively on mass treatment with the microfilaricide ivermectin. Worldwide eradication of the parasite by means of this drug is unlikely. Macrofilaricidal drugs are currently being developed for human use. METHODS: We used ONCHOSIM, a microsimulation mathematical model of the dynamics of onchocerciasis transmission, to explore the potentials of a hypothetical macrofilaricidal drug for the elimination of onchocerciasis under different epidemiological conditions, as characterized by previous intervention strategies, vectorial capacity and levels of coverage. RESULTS: With a high vector biting rate and poor coverage, a very effective macrofilaricide would appear to have a substantially higher potential for achieving elimination of the parasite than does ivermectin. CONCLUSIONS: Macrofilaricides have a substantially higher potential for achieving onchocerciasis elimination than ivermectin, but high coverage levels are still key. When these drugs become available, onchocerciasis elimination strategies should be reconsidered. In view of the impact of control efforts preceding the introduction of macrofilaricides on the success of elimination, it is important to sustain current control efforts
Density-Dependent Mortality of the Human Host in Onchocerciasis: Relationships between Microfilarial Load and Excess Mortality
Human onchocerciasis (River Blindness) is a parasitic disease leading to visual impairment including blindness. Blindness may lead to premature death, but infection with the parasite itself (Onchocerca volvulus) may also cause excess mortality in sighted individuals. The excess risk of mortality may not be directly (linearly) proportional to the intensity of infection (a measure of how many parasites an individual harbours). We analyze cohort data from the Onchocerciasis Control Programme in West Africa, collected between 1974 and 2001, by fitting a suite of quantitative models (including a ‘null’ model of no relationship between infection intensity and mortality, a (log-) linear function, and two plateauing curves), and choosing the one that is the most statistically adequate. The risk of human mortality initially increases with parasite density but saturates at high densities (following an S-shape curve), and such risk is greater in younger individuals for a given infection intensity. Our results have important repercussions for programmes aiming to control onchocerciasis (in terms of how the benefits of the programme are calculated), for measuring the burden of disease and mortality caused by the infection, and for a better understanding of the processes that govern the density of parasite populations among human hosts
Onchocerciasis transmission in Ghana: Persistence under different control strategies and the role of the simuliid vectors
Background:
The World Health Organization (WHO) aims at eliminating onchocerciasis by 2020 in selected African countries. Current control focuses on community-directed treatment with ivermectin (CDTI). In Ghana, persistent transmission has been reported despite long-term control. We present spatial and temporal patterns of onchocerciasis transmission in relation to ivermectin treatment history.
Methodology/Principal Findings:
Host-seeking and ovipositing blackflies were collected from seven villages in four regions of Ghana with 3–24 years of CDTI at the time of sampling. A total of 16,443 flies was analysed for infection; 5,812 (35.3%) were dissected for parity (26.9% parous). Heads and thoraces of 12,196 flies were dissected for Onchocerca spp. and DNA from 11,122 abdomens was amplified using Onchocerca primers. A total of 463 larvae (0.03 larvae/fly) from 97 (0.6%) infected and 62 (0.4%) infective flies was recorded; 258 abdomens (2.3%) were positive for Onchocerca DNA. Infections (all were O. volvulus) were more likely to be detected in ovipositing flies. Transmission occurred, mostly in the wet season, at Gyankobaa and Bosomase, with transmission potentials of, respectively, 86 and 422 L3/person/month after 3 and 6 years of CDTI. The numbers of L3/1,000 parous flies at these villages were over 100times the WHO threshold of one L3/1,000 for transmission control. Vector species influenced transmission parameters. At Asubende, the number of L3/1,000 ovipositing flies (1.4, 95% CI = 0–4) also just exceeded the threshold despite extensive vector control and 24 years of ivermectin distribution, but there were no infective larvae in host-seeking flies.
Conclusions/Significance:
Despite repeated ivermectin treatment, evidence of O. volvulus transmission was documented in all seven villages and above the WHO threshold in two. Vector species influences transmission through biting and parous rates and vector competence, and should be included in transmission models. Oviposition traps could augment vector collector methods for monitoring and surveillance
A Research Agenda for Helminth Diseases of Humans: Towards Control and Elimination
Human helminthiases are of considerable public health importance in sub-Saharan Africa, Asia, and Latin America. The acknowledgement of the disease burden due to helminth infections, the availability of donated or affordable drugs that are mostly safe and moderately efficacious, and the implementation of viable mass drug administration (MDA) interventions have prompted the establishment of various large-scale control and elimination programmes. These programmes have benefited from improved epidemiological mapping of the infections, better understanding of the scope and limitations of currently available diagnostics and of the relationship between infection and morbidity, feasibility of community-directed or school-based interventions, and advances in the design of monitoring and evaluation (M&E) protocols. Considerable success has been achieved in reducing morbidity or suppressing transmission in a number of settings, whilst challenges remain in many others. Some of the obstacles include the lack of diagnostic tools appropriate to the changing requirements of ongoing interventions and elimination settings; the reliance on a handful of drugs about which not enough is known regarding modes of action, modes of resistance, and optimal dosage singly or in combination; the difficulties in sustaining adequate coverage and compliance in prolonged and/or integrated programmes; an incomplete understanding of the social, behavioural, and environmental determinants of infection; and last, but not least, very little investment in research and development (R&D). The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to undertake a comprehensive review of recent advances in helminthiases research, identify research gaps, and rank priorities for an R&D agenda for the control and elimination of these infections. This review presents the processes undertaken to identify and rank ten top research priorities; discusses the implications of realising these priorities in terms of their potential for improving global health and achieving the Millennium Development Goals (MDGs); outlines salient research funding needs; and introduces the series of reviews that follow in this PLoS Neglected Tropical Diseases collection, “A Research Agenda for Helminth Diseases of Humans.