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Abstract

Background

TheWorld Health Organization (WHO) aims at eliminating onchocerciasis by 2020 in se-

lected African countries. Current control focuses on community-directed treatment with iver-

mectin (CDTI). In Ghana, persistent transmission has been reported despite long-term

control. We present spatial and temporal patterns of onchocerciasis transmission in relation

to ivermectin treatment history.

Methodology/Principal Findings

Host-seeking and ovipositing blackflies were collected from seven villages in four regions of

Ghana with 3–24 years of CDTI at the time of sampling. A total of 16,443 flies was analysed

for infection; 5,812 (35.3%) were dissected for parity (26.9% parous). Heads and thoraces

of 12,196 flies were dissected forOnchocerca spp. and DNA from 11,122 abdomens was

amplified usingOnchocerca primers. A total of 463 larvae (0.03 larvae/fly) from 97 (0.6%) in-

fected and 62 (0.4%) infective flies was recorded; 258 abdomens (2.3%) were positive for

Onchocerca DNA. Infections (all were O. volvulus) were more likely to be detected in ovi-

positing flies. Transmission occurred, mostly in the wet season, at Gyankobaa and Boso-

mase, with transmission potentials of, respectively, 86 and 422 L3/person/month after 3

and 6 years of CDTI. The numbers of L3/1,000 parous flies at these villages were over 100
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times the WHO threshold of one L3/1,000 for transmission control. Vector species influ-

enced transmission parameters. At Asubende, the number of L3/1,000 ovipositing flies (1.4,

95% CI = 0–4) also just exceeded the threshold despite extensive vector control and 24

years of ivermectin distribution, but there were no infective larvae in host-seeking flies.

Conclusions/Significance

Despite repeated ivermectin treatment, evidence ofO. volvulus transmission was docu-

mented in all seven villages and above theWHO threshold in two. Vector species influences

transmission through biting and parous rates and vector competence, and should be includ-

ed in transmission models. Oviposition traps could augment vector collector methods for

monitoring and surveillance.

Author Summary

The World Health Organization (WHO) aims at eliminating onchocerciasis by 2020 in se-

lected African countries. The success of elimination using ivermectin treatment alone will

depend on several interacting factors including baseline endemicity, treatment coverage

and vector species mix. In Ghana, transmission persists despite prolonged control. We in-

vestigated entomological determinants of this persistence. Blackflies were collected from

seven villages with 3–24 years of ivermectin treatment. A total of 12,196 flies was dissected,

with 463 larvae (all Onchocerca volvulus) in 97 infected and 62 infective flies. Transmission

indices in the wet season, at Gyankobaa and Bosomase, amounted to, respectively, 86 and

422 infective larvae/person/month after 3 and 6 years of ivermectin treatment. Infection

levels at these villages were over 100 times the WHO threshold of one L3/1,000 parous

flies. At Asubende, an infective fly was caught among ovipositing flies in nearby breeding

sites, indicating that infection was just over the WHO threshold despite extensive ivermec-

tin and vector control. Spatial and seasonal vector species composition influences the mag-

nitude of transmission indices through variations in biting and parous rates, and vectorial

competence and capacity, and should be reflected in transmission models. Oviposition

traps could enhance vector collection for transmission monitoring and surveillance.

Introduction

The London Declaration on Neglected Tropical Diseases (NTDs) [1] and the World Health

Organization’s (WHO) road map to accelerate progress for overcoming the impact of NTDs

[2] have set goals for the elimination of human onchocerciasis by 2020 in selected African

countries. Based on the results of epidemiological studies conducted in some foci of Mali, Sene-

gal and Nigeria [3,4,5], it has been suggested that 14–17 years of annual (or biannual) ivermec-

tin treatment may lead to local elimination of the infection reservoir in the absence of vector

control. The repeatability of these achievements depends, in part, on the initial level of oncho-

cerciasis endemicity, geographical and therapeutic coverage, treatment compliance and fre-

quency, parasite susceptibility to ivermectin, and the intensity and seasonality of transmission,

including the species composition of the simuliid vectors [6].

Previous reports assessing the feasibility of onchocerciasis elimination have concluded that

although ivermectin mass drug administration (MDA) alone would help to eliminate the
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public health burden of onchocerciasis, it would not lead to elimination of infection in most

foci, with the possible exception of areas of low endemicity [7]. However, more recent and en-

couraging results in areas of moderate to higher endemicity [3,4,5], have spurred the African

Programme for Onchocerciasis Control (APOC) to shift its goals from morbidity control to

local elimination of Onchocerca volvulus where possible [8]. Recognising the need to under-

stand the nature and extent of transmission zones, APOC and WHO have emphasized the im-

portance of conducting entomological studies on the determinants and feasibility of

elimination [8,9,10]. Current WHO guidelines state that parasite levels within the vector need

to be below a threshold of one L3 larva per 1,000 parous flies [11]. However, understanding

how this measurement relates to the rate of transmission assessed via the biting rate, the infec-

tious biting rate, the parous rate and the transmission potential, and importantly, how it varies

with vector species composition and season, is vital for accurate monitoring and interpretation

of this threshold [8].

Ghana was originally a country under the umbrella of the Onchocerciasis Control Pro-

gramme in West Africa (OCP), which operated between 1974 and 2002, and was initially a vec-

tor control programme [12,13]. Vector control activities started in 1975 in the onchocerciasis

savannah foci of northern and central Ghana, but the southern forest foci were not part of the

programme [9]. When the microfilaricidal drug ivermectin was licensed for human use in 1987

[14,15], Ghana was one of the first countries to commence MDA. In particular, community tri-

als were conducted in the then highly hyperendemic focus of Asubende (initial microfilarial

prevalence of 80%) [16], where vector control had taken place but was suspended during the

ivermectin distribution pilot study in the late 1980s. When the OCP ceased operations in 2002,

the persistence of onchocerciasis at Asubende required this focus to be part of the so-called

Special Intervention Zones, which maintained extensive coverage with ivermectin leading to

dramatic reductions in infection intensity and prevalence [17].

In 2007, Osei-Atweneboana and co-workers [18] reported on the epidemiological situation

in Ghana after the closure of the OCP and observed that despite vector control, and 19 years of

annual ivermectin treatment, some communities exhibited high microfilarial prevalence and

intensity (measured as the community microfilarial load) [19]. This was subsequently attribut-

ed to adult female worms being less responsive to the anti-fecundity effects of multiple treat-

ments with ivermectin in some communities [20], but others pointed out the possibility of

programmatic causes such as poor coverage permitting significant residual transmission

[21,22,23]. Concerned by these findings, the NTD Programme of the Ghana Health Service ini-

tiated biannual ivermectin distribution in some communities in 2009 [6,24]. From 2003, iver-

mectin distribution was also extended to include endemic areas in Ghana which had not

previously been included in the OCP.

Motivated by the need to understand the feasibility of elimination in Ghana, and in particu-

lar the entomological determinants of transmission persistence despite prolonged control, we

conducted a study on the transmission of onchocerciasis in areas both within and outside the

original OCP area. We have already reported on the spatial and temporal distribution of spe-

cies within the Simulium damnosum complex found at breeding sites in southern Ghana from

1971 to 2011 [25], and on the biting and parous rates of host-seeking females [26]. In this

paper, we present the spatial and temporal patterns of infection with Onchocerca spp. larvae of

host-seeking and ovipositing flies in communities that have experienced different durations

(and frequency) of ivermectin treatment. We relate our findings to the therapeutic coverage re-

corded in each study village and discuss the potential of fly trapping techniques, not based on

the traditional OCP vector collector method, for the monitoring of transmission prior to or

after the initiation of post-MDA surveillance.

Persistence of Onchocerciasis Transmission in Ghana
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Materials and Methods

Ethics Statement
Ethical clearance was obtained from the Imperial College Research Ethics Committee

(ICREC_9_1_7) and the Institutional Review Board of the Noguchi Memorial Institute for

Medical Research, University of Ghana (IRB:0001276, 006/08-09). No tissue samples were

taken from human subjects; however, local villagers and elders assisted with blackfly collec-

tions. Signed informed consent was obtained from all individuals involved after detailed expla-

nations in their local languages about the study. Participating individuals were not at an

increased risk of exposure, nor were human samples obtained for diagnosis, therefore, no treat-

ments were offered. However, all participants were receiving ivermectin as part of the national

programme following appropriate (annual or biannual) schedules according to the Ghana

Health Service strategy [24].

Study Area
Site selection, geography and key simuliid species are described elsewhere [26], but, in brief,

blackfly collection was conducted in seven villages within four regions of Ghana: Asubende (08°

01'01.4"N, 00°58'53.8"W) and Agborlekame (08°14'04.0"N, 2°12'23.2"W) in the Brong-Ahafo Re-

gion; Asukawkaw Ferry (07°40'55.9"N, 00°22'16.0"E), Dodi Papase (07°43'22.5"N, 00°30'38.3"E)

and Pillar 83 (07°42'20.3"N, 00°35'21.5"E) in the Volta Region (Pillar 83 is the village on the Gha-

naian side of the river Wawa, which forms the border and is known as the Gban-Houa in Togo,

opposite the former OCP catching site of Djodji in Togo); Bosomase (05°10'44.7"N, 01°

36'23.1"W) in the Western Region and Gyankobaa (06°20'12.4"N, 01°16'11.3"W) in the Ashanti

Region (Fig 1). A pilot study was conducted at Bosomase in January–February 2006 to assess

the efficacy of Bellec traps (see below) as a fly collection method, and to test the performance of

DNA amplification methods for the determination of blackfly species, infection status and

blood meal origin. The main sample collection took place during one wet season, 23rd July–5th

September 2009, and two dry seasons, 14th February–28th March 2010 and 30th January–5th

March 2011. Villages were visited and samples were collected for up to five consecutive days

per site per trip. Not all sites were successfully sampled during each period due to weather con-

ditions and variability in blackfly population abundance.

Blackfly Sample Collection
Aquatic stages. Larvae and pupae were collected from submerged vegetation in fast flow-

ing stretches of the rivers. They were preserved in Carnoy’s solution (ethanol: acetic acid, 3:1)

for chromosomal identification. Chromosomal preparations and identification to species and

cytoforms were carried out by standard cytotaxonomy techniques [27]. Findings have been

published elsewhere [25] but they are used here to inform the morphological identifications of

adult flies (see below) to assist with assessment of vector species composition.

Ovipositing blackflies. Sticky Traps (Bellec Traps): Bellec traps were set following a modi-

fied protocol based on previously proven procedures [28]. The traps consisted of corrugated

iron sheets of approximately 1m2, with perforations to fasten floats and attach ropes, sus-

pended from vegetation approximately one metre from rapids in the river (Fig 2A) at a 45°

angle with the water surface, or on the river banks (<2m from rapids). Six traps, each at least

4m apart, were coated with coconut or peanut oil and checked at 08:00 and 17:00 daily for five

days at each location per sampling trip. Blackflies stuck on the plates were collected with for-

ceps, washed with xylene to remove the oil, counted, morphologically identified and preserved

in a solution of equal parts of xylene: absolute ethanol. The traps were rinsed with water

Persistence of Onchocerciasis Transmission in Ghana
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between collections before being re-coated with coconut or peanut oil. If no blackflies were col-

lected after 24 hours, the location of the trap was changed to maximize sampling success.

Light Traps (Monk’s Wood Traps): Two UVMonk’s Wood light traps [29,30] were set ap-

proximately 20m apart, and at least 6m from any Bellec trap, at the riverside in each village,

every day during each sampling period, between dusk and dawn and examined every morning

(Fig 2B). Trapped insects were killed with methanol and any blackflies collected were preserved

in absolute ethanol for subsequent identification. If no blackflies were collected after 24 hours,

the location of the trap was changed to maximize sampling success. Cables attaching the 12V

batteries on which the light traps operated were coated in grease to prevent removal of the trap

contents by ants.

Fig 1. Maps showing the location of Ghana (A), the boundaries and start dates for the Onchocerciasis Control Programme (OCP) phases (B), and
the seven Ghanaian study sites (C). The OCP began vector control operations acrossWest Africa in 1975. Asubende received vector control from 1986,
which was interrupted several times during 1987–1989 because of community trials of the impact of ivermectin mass treatment on transmission and
microfilarial loads. At the time of closure of the OCP in 2002, the Asubende focus was incorporated into a special intervention zone (SIZ) due to on-going
transmission. The breeding sites at Asukawkaw Ferry, Dodi Papase and Pillar 83 were first treated with larviciding insecticides during OCP experimental
campaigns (reinvasion studies) in 1981 (see Fig 2 of Cheke & Garms 1983 [94]), before becoming part of the South-eastern extension, which reached these
river basins when it became fully operational in February 1988.

doi:10.1371/journal.pntd.0003688.g001
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Host-seeking blackflies. Host-seeking blackfly collection has been described in detail else-

where [26], but in summary, blackflies were caught using a human-baited (gazebo-like) tent, a

cattle-baited tent (Fig 2C and 2D) and the standard OCP vector collector methods [31]. (The

motivation for collecting flies attracted to cattle stemmed from the objective of the overall

study, aiming to understand patterns of blood host choice by onchocerciasis vectors and their

impact on transmission dynamics. Therefore, we also report here the results obtained from the

cow-baited tent and pay particular attention to the species identification of Onchocerca larvae,

a proportion of which could have been of zoonotic (cattle) origin.) The human and cattle-

baited tents were set>20m apart from each other and>20m from any oviposition trap. The

vector collector was>20m from any other catching trap. Blackflies were collected hourly from

07:00 to 18:00 each day. Flies were stored individually in tubes in a cool box and then refriger-

ated overnight before being morphologically identified and dissected for parity the following

day [26].

Fig 2. Methods used to obtain host-independent (A, B) and host-dependent (C, D) adult female blackfly samples. (A) Bellec (sticky) trap situated
above rapids; (B)Monk’s Wood (light) trap placed near presumed breeding sites; (C) human-baited tent; (D) cow-baited tent.A andB illustrate traps to
collect ovipositing flies; C andD depict methods to obtain host-seeking flies.

doi:10.1371/journal.pntd.0003688.g002
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In summary, a total of six Bellec traps, two Monk’s Wood light traps, one human-baited

tent, one cattle-baited tent and one standard OCP vector collection was used every day for five

days at each location per sampling trip.

Blackfly species identification
In Ghana, six main species are known to contribute to the transmission of O. volvulus. These

are S. damnosum sensu stricto (s.s.) Vajime and Dunbar; S. sirbanum Vajime and Dunbar; S.

sanctipauli Vajime and Dunbar; S. yahense Vajime and Dunbar; the Beffa form of S. soubrense

Vajime and Dunbar [32] and S. squamosum (Enderlein) (of which both C and E forms occur)

[25]. Morphological identifications, parity status and molecular fly identifications have been

described in detail previously [26] and were carried out using standard methods

[32,33,34,35,36,37,38,39,40,41]. The colour of the fore-coxae used by some authors [33,34] to

separate S. damnosum s.s. from S. sirbanum is unreliable since many individuals of both species

with either dark or pale fore-coxae have been noted, especially in the eastern parts of the for-

mer OCP, and therefore these two species were not split by definitive identification and are

termed S. damnosum s.s. /S. sirbanum. Morphological identifications and parity status of the

host-seeking blackflies were performed the day after being caught. Parous females’ abdomens

were separated from the head and thorax, which were preserved individually in corresponding

wells of two 96-well PCR plates (one for heads plus thoraces, one for abdomens) in absolute

ethanol for subsequent molecular analysis. When catch numbers were manageable (up to 300

flies per day), all host-seeking flies were first dissected for parity in the field. When parity of

some blackflies was not assessed due to high catch numbers and time constraints (>300 per

day), all remaining host-seeking flies were only morphologically identified and their heads and

thoraces separated from their abdomens and stored as above. Simulium squamosum shares

many morphological traits with other sympatric species, causing difficulties when identifying

some adult blackflies [33]. Therefore, DNA from all abdomens was extracted and used for de-

finitive molecular identification of S. squamosum and for Onchocerca spp. infections as de-

scribed below. Flies caught in Bellec and Monk’s Wood traps were morphologically identified

using the same techniques [35,36,37,38,39,40,41], and the heads, thoraces and abdomens sepa-

rated and stored individually as for the host-seeking flies [26].

Assessment of Infection Rates
The heads and thoraces of all the known parous and unknown parous (physiological age not

determined) host-seeking blackflies were dissected for Onchocerca infection. Flies caught in

Bellec and Monk’s Wood traps were in the process of ovipositing and hence were not dissected

for parity, as their gravid status made parity assessment impossible without counting their ova

[42]. Although the flies coming to lay eggs in breeding sites would comprise both nulliparous

(laying eggs for the first time) and parous flies (having laid eggs before), it was assumed that

they would have all taken at least one blood meal (as S. damnosum s.l. is obligatorily anauto-

genous [43]) and, therefore, capable of ingesting Onchocercamicrofilariae if feeding on infected

hosts 2–3 days previously. By the time of oviposition, some of these microfilariae could have

migrated out of the abdomen and established in the thorax as L1 larvae. In parous flies, infec-

tions picked up 2–3 gonotrophic cycles earlier, could have developed into pre-infective (L2) in

the thorax, or infective (L3) larvae, found in heads or thoraces. Therefore, the heads and thora-

ces of all ovipositing flies were dissected for infection with Onchocerca larvae. Heads and thora-

ces were soaked in distilled water for one hour, stained with a solution of 7% lactopropionic

orcein in distilled water for a further hour [44], and examined in a drop of the staining solution

under a dissecting microscope. The numbers, developmental stage (L1, L2, L3), and location

Persistence of Onchocerciasis Transmission in Ghana

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003688 April 21, 2015 7 / 27



within the fly (head or thorax) of any Onchocerca spp. larvae were recorded. Larvae were trans-

ferred to steel-frame 0.9μm POL-membrane slides (Microdissect, Leica, Germany) [45] for

subsequent individual DNA-based identification of parasite species (such as O. volvulus, O.

ochengi, O. ramachandrini, O. dukei, O. denkei and the Siisa-clade of O. ochengi) [46,47,48]. In

the field, during the morphological identification and parity dissection, any Onchocerca larvae

which emerged were also recorded and transferred to a POL-membrane slide.

Molecular Analysis ofOnchocerca Species
Since S. damnosum s.l. is also involved in the transmission of other Onchocerca species [46,49],

parasite larvae were identified by molecular methods to ensure that transmission of human on-

chocerciasis would be accurately recorded. POL-membrane slides with the Onchocerca spp. L1,

L2 and/or L3 were placed on a Leica LMD6000 laser dissection microscope, viewed on a com-

puter screen, and any Onchocerca larvae were cut out individually using an ultraviolet laser,

with the sample falling into a PCR tube cap below [45]. Larvae were stored in 15μl Qiagen ATL

buffer and frozen until DNA extraction. DNA extraction was performed using the QIAamp

DNAMicro kit (QIAGEN) following the ‘isolation of genomic DNA from laser-microdissected

tissues’ protocol, with DNA eluted into 30μl sterile distilled water. DNA was amplified using

general Onchocerca (primer O-150) [47,50] and the O. volvulus specific (C1A1-2) [47] primers

and the results run on agarose gels for species identification through presence or absence of the

O. volvulus specific amplicon, when the Onchocerca general PCR had been successful. In addi-

tion, PCR amplifications were performed using three further pairs of primers 12SOvB and C,

16SOvB and C, and ND5OvA and C amplifying 12S rRNA, 16S rRNA, and ND5 mitochondrial

genes respectively [51,52]. PCR clean-up, quantification and sequencing was performed on

these 12S, 16S, and ND5 amplicons. Sequences were then individually run through BLAST and

Onchocerca species identification scored when successful matches occurred. Sequences were

also compared to known sequences of Onchocerca on ClustalW for additional clarification of

any species identification. PCR plates contained negative water controls, O. ochengi (adult

worm DNA) positive controls, and O. volvulus (microfilarial DNA) positive controls. Presence

of Onchocerca (most likely microfilariae or infective larvae) in the abdomens was detected

using the same 16S protocol [51] mentioned above for dissected Onchocerca larvae; any posi-

tive amplicons were then also sequenced and run through BLAST and ClustalW.

Treatment History
The study communities currently receive community-directed treatment with ivermectin

(CDTI) but with varying treatment histories in terms of number of years of MDA and treat-

ment frequency, as well as having experienced a range of historical vector control activities,

summarised in Table 1. Community drug distributors were interviewed regarding recent drug

administrations in each village, as well as village, regional and national treatment records

checked for historical treatments. Dates of historical vector control are indicated in Fig 1 and

previously discussed in [26]. Data on yearly therapeutic coverage of ivermectin for each study

village for annual or biannual treatment rounds were provided by the Ghana Health Service.

Statistical Analyses
Except where specified as PCR results on the blackfly abdomens, all data presented are from

dissections of heads and thoraces only. Data are reported as per fly, per parous fly, per infected

fly or infective fly throughout. The proportion infected is taken as the number of flies of each

species with any larval stage (L1, L2 or L3) divided by the total number of flies of that species

Persistence of Onchocerciasis Transmission in Ghana

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003688 April 21, 2015 8 / 27



Table 1. Vector control and ivermectin treatment history, current strategy and infection levels per village.

Region Village Vector control history First

ivermectin

treatment

round

Ivermectin

treatment

frequency and

year(s) it applies

from

Baseline year,

microfilarial

prevalence in %

(CMFLa)

Year of

CDTIb

missed

since 2000

Date of last

treatment

prior to data

collection

Start date of

data

collection

(season)

Percentage of

flies infectedc

(95%CI)

Percentage of

flies infectived

(95%CI)

Brong-

Ahafo

Asubende 1986–2002
(interruptedduring
1987–1989 for
ivermectin trials)

1987 Annual 1987–
2009, Bi-Annual
since 2009

1980, 76.1%
(23.8mf/ss)

2005 Dec 2010 07/02/11 (Dry) 0.1 (0.0–0.5) 0.1 (0.0–0.5)

Agborlekame 1975–2002 1987 Annual 1987–
2009, Bi-Annual
since 2009

1980, 66.5%
(23.3mf/ss)

2005 Jan 2010 21/02/10 (Dry) 0.0 (0.0–2.3) 0.0 (0.0–2.3)

Volta Asukawkaw

Ferry

1981, 1988–2002 1993 Annual since
1993

1978, 76.0%
(14.3mf/ss)

2005 Jan 2008 03/08/09
(Wet)

0.0 (0.0–1.0) 0.0 (0.0–1.0)

Jan 2010 16/03/10 (Dry) 0.1 (0.0–0.5) 0.0 (0.0–0.4)

Dec 2010 24/02/11 (Dry) 0.0 (0.0–0.4) 0.0 (0.0–0.4)

Dodi Papase 1981, 1998–2002 1993 Annual since
1993

1978, 66.8%
(16.8mf/ss)

2006 Jan 2009 09/08/09
(Wet)

0.0 (0.0–1.6) 0.0 (0.0–1.6)

Jan 2010 11/03/10 (Dry) 0.0 (0.0–1.0) 0.0 (0.0–1.0)

Dec 2010 21/02/11 (Dry) 0.0 (0.0–0.6) 0.0 (0.0–0.6)

Pillar 83/

Djodji

1981, 1988–2002 1993 Multiple 1993–
1997, Annual
since 1998

2000, 6.8%e

(0.09mf/ss)
2001, 2005 Feb 2009 28/07/09

(Wet)
0.0 (0.0–7.6) 0.0 (0.0–7.6)

Jan 2010 06/03/10 (Dry) 0.0 (0.0–0.2) 0.0 (0.0–0.2)

Dec 2010 17/02/11 (Dry) 0.0 (0.0–0.1) 0.0 (0.0–0.1)

Western Bosomase None 2003 Annual since
2003

2002, 41.0%
(1.35mf/ss)

2007 Jun 2008 19/08/09
(Wet)

1.4 (0.2–2.5) 0.7 (0.1–1.6)

Jan 2010 24/02/10 (Dry) 1.9 (0.3–3.2) 1.1 (0.2–2.1)

Ashanti Gyankobaa None 2006 Annual 2006–
2009, Bi-Annual
since 2009

2006, 45.1%
(2.89mf/ss)

None Sept 2008 26/08/09
(Wet)

2.1 (0.4–2.8) 1.1 (0.2–1.6)

Dec 2009 17/02/10 (Dry) 0.0 (0.0–30.9) 0.0 (0.0–30.9)

a CMFL = community microfilarial load as defined in [19], expressed as microfilariae (mf) per skin snip (ss)
b CDTI = community-directed treatment with ivermectin
c Flies infected with any O. volvulus larval stage
d Flies infected with O. volvulus L3 larvae in heads and thoraces (the percentages of infected and infective flies were calculated from all flies, collected by both oviposition and host-

seeking methods. Details of the total numbers dissected for each collection technique per village per season are presented in S2 Table)
e pre-treatment baseline prevalence unknown, with 2000 the earliest date available; multiple ivermectin treatments from 1993 to 1997. In 1992, a mapping survey of the

Onchocerciasis Control Programme in West Africa extension stated that ‘the site of Djodji presents the highest transmission potentials of the Eastern extension’[95].

doi:10.1371/journal.pntd.0003688.t001
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dissected and are presented with 95% exact confidence intervals (95% CI), determined using

the method of Clopper-Pearson [53].

Because Onchocerca L3s can migrate from other parts of the body to the head during a

blood meal, a fly with L3s in any body part is counted as infective [54,55,56]. (Infective larvae

develop in the fly’s thoracic muscles and typically migrate to the head capsule and the fly’s pro-

boscis, but they have also been detected in the halteres and abdomen.) Therefore, the propor-

tion infective is the number of flies of each species with L3 larvae (in head and/or thorax)

divided by the total number of flies of that species dissected and is presented with 95% CIs. In

addition we also present the number of flies with L3s in the head only for comparison with

published literature.

We calculated monthly infective biting rates, which take into account the number of infec-

tive flies that (come to) bite a host per month, but not their parasite burden. These were calcu-

lated by multiplying the proportion of infective flies (with L3 larvae in head and/or thorax) by

the monthly biting (landing) rates as reported elsewhere [26], but summarised in S1 Table.

Monthly parous biting rates, the monthly rate at which a host would be bitten by parous flies,

have been presented and analysed by species elsewhere [26].

We calculated the arithmetic mean number of L3 per infective fly per species (L3s/infective

fly) as the total number of L3 larvae divided by the number of flies which contained any L3 lar-

vae. The monthly transmission potential is the mean number of L3 larvae to which a host is ex-

posed per month. These were calculated by multiplying monthly infective biting rates by the

number of L3s/infective fly. We report transmission potentials for given months in the wet and

dry seasons, but as we did not collect data throughout the whole year we do not extrapolate

these results to annual transmission potentials. As fly survival rates have been shown to affect

variations in transmission rates [57,58], we also present the number of L3 larvae per 1,000 par-

ous flies as recommended by the WHO [11]. These values are reported, separately, for parous

host-seeking flies and ovipositing flies for each location and season. The mean number of L3s/

1,000 parous (or ovipositing) flies was calculated as the total number of L3 larvae divided by

the total number of parous (or ovipositing) flies dissected for Onchocercamultiplied by 1,000.

We did not assume that the same parity rates determined in samples of host-seeking flies

would apply to the ovipositing flies caught near (by light traps) or in breeding sites (by Bellec

traps) because a phenomenon of differential dispersal of nulliparous and parous flies along riv-

ers and inland from rivers has been documented in S. damnosum s.l., which varies between the

savannah and forest members of the species complex [59].

The transmission indices described above were calculated from flies captured by vector col-

lectors (and therefore relate to human exposure and the potential of transmission from flies to

humans) unless stated otherwise. Host-seeking infective flies collected in the cow tents—had

they been able to bite cattle and shed their entire L3 larval load—would not have contributed

effectively to the transmission of O. volvulus. However, these flies indicate occurrence of active

transmission from humans to flies, as they have become infected and survived the incubation

period of the parasite. Therefore, these transmission parameters are presented for each host-

seeking catching technique. Also, our results indicate that flies that bite cattle may also bite hu-

mans (blood meal results to be presented elsewhere) and so, if able to survive further gono-

trophic cycles, infected and infective flies attracted to cattle could subsequently feed on

humans and transmit their remaining infective larval load as, on average, only 50 to 80% of L3

larvae are shed per bite [55,60]. The proportion infected, proportion infective, the mean num-

ber of L3s/infective fly and the number of L3s/1,000 (parous or ovipositing) flies are reported,

separately, for host-seeking and ovipositing flies.

Statistical analyses were performed on SPSS version 22 (SPSS, Inc., Chicago, IL, USA) or R

[61]. Numbers of infected and infective flies, for all catches, and per species, were compared

Persistence of Onchocerciasis Transmission in Ghana
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among villages, seasons and trapping methods using chi-squared (χ2) tests. Ninety five percent

CIs for the number of L3/1,000 parous, L3 per 1,000 ovipositing and L3 per infective flies were

determined using a percentile bootstrap method [62]. A correlation between the number of

years since the start of ivermectin treatment and the proportion of infected and infective flies

was tested using Spearman’s Rank correlation coefficient (rS). Variation in infection intensities

among different species was compared using Kruskal Wallis and Mann–Whitney U tests.

Numbers of infected versus uninfected flies as measured by PCR of the abdomens were com-

pared between catching techniques using the chi-squared (χ2) test. Therapeutic coverage of

ivermectin distribution was plotted against time since each village commenced treatment, with

a best fit polynomial plotted for each village.

Results

A total of 17,300 S. damnosum s.l. flies was collected, of which 6,142 (35.5%) were caught by

vector collectors; 2,207 (12.8%) were trapped in the human-baited tents; 1,567 (9.1%) in the

cow-baited tents; 7,212 (41.7%) on Bellec traps—including 3,352 (46.5% of the Bellec total)

from the pilot study in Bosomase during the dry season in 2006—and 172 (1%) in Monk’s

Wood light traps. A total of 16,478 (95.2%) blackflies was morphologically identified, of which

5,812 (35.3%) were dissected for parity in the field, with 4,247 (73.1%) nullipars and 1,565

(26.9%) parous flies. These nullipars were not further dissected for Onchocerca infection, but

pooled samples of the nullipars were used as molecular controls, with no positive Onchocerca

results obtained. The heads and thoraces of 12,196 flies (6,918 ovipositing flies, 3,713 host-

seeking flies of unknown parity status and 1,565 known parous flies) were stained and dissected

for Onchocerca spp. larvae. These, plus the known uninfected nullipars (4,247), totalled 16,443

flies whose infection status was assessed. A total of 97 (0.6%) was infected (with any larval

stage) of which 58 (0.4%) were infective (with L3s in head and/or thorax), with 45 flies (0.3%)

harbouring L3s in the head (S2 Table).

Onchocerca spp. Identification
DNA was extracted and amplified from all 463 larvae of all stages, from the 97 infected flies (on

average, 4.8 larvae per infected fly and 0.03 per fly). The PCR product using the ND5 primers

was consistently of poor quality and therefore only the 12S and 16S amplicons [51] were used for

Onchocerca spp. identification with BLAST and ClustalW. Of all individual L1 to L3 larvae, 76%

(352/463) were positively identified asO. volvulus using either 12SOv, 16SOv primers and/orO.

volvulus specific (O-150 versus C1A1-2) amplicons in the agarose gels. The remaining 24% were

not successfully amplified. NoO. ochengi was observed in the field-caught flies, but the positive

O. ochengi controls were successfully identified by BLAST and/or ClustalW and did not have O.

volvulus specific amplicons in the agarose gels. There were no ambiguous results for the species

identification. Of the 111 non-identifiable larvae, 107 (96%) came from flies in which other lar-

vae of the same stage had been successfully identified asO. volvulus.

Onchocerca volvulus Transmission
Blackflies infected with O. volvulus larvae were recorded at Asubende, Asukawkaw Ferry, Boso-

mase and Gyankobaa, and infective flies (with L3s in head and/or thorax) were recorded at

Asubende, Bosomase and Gyankobaa (Tables 1 and S2). No infected or infective flies were ob-

served at Agborlekame, Dodi Papase or Pillar 83 during our study from the heads and thoraces;

however, O. volvulus DNA was amplified in flies from all seven villages from the abdomens

(see below).

Persistence of Onchocerciasis Transmission in Ghana
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There was no statistically significant difference in the proportion of infected (χ2 = 5.06, d.f. =

3, p = 0.168) and infective (χ2 = 2.79, d.f. = 3, p = 0.425) flies caught at Gyankobaa or Bosomase

by the different trapping methods. A higher but, not statistically significant, proportion of in-

fected and infective parous flies were caught in the cow-baited tents (infected = 2.54%, infec-

tive = 1.34%) than the other trapping methods (Fig 3), with infected and infective levels of 1.53%

and 0.77% in the human-baited tents, 2.30% and 0.73% by the vector collectors and 1.06% and

0.97% in the oviposition traps, respectively. Twenty seven percent of the infected flies were

caught in the cow-baited tents, 19% in the human-baited tents, 34% in the vector collector

caught flies and 20% by the oviposition traps.

There was no statistically significant difference between the proportion of infected (χ2 =

0.90, d.f. = 1, p = 0.353) or infective (χ2 = 2.09, d.f. = 1, p = 0.148) flies caught by the oviposition

and host-seeking methods combined, nor between the two most successful catching tech-

niques, namely the Bellec traps and the vector collector method (infected: χ2 = 3.08, d.f. = 1,

p = 0.079; infective: χ2 = 0.30, d.f. = 1, p = 0.584). In contrast, in the abdomens, statistically sig-

nificantly more flies had O. volvulus infections, as recorded by PCR, in the ovipositing flies

than in the host-seeking flies (χ2 = 19.58, d.f. = 1, p<0.001), as well as in just the Bellec-caught

flies in comparison with the vector collector-caught flies (χ2 = 8.51, d.f. = 1, p = 0.004).

Fig 3. Proportions of infected and infective flies by season and samplingmethod for Bosomase and Gyankobaa. Data and error bars are as in Fig 3,
but excluding the 2006 Bellec-caught flies collected at Bosomase, as during the pilot study comparisons with other fly collection methods were not conducted.

doi:10.1371/journal.pntd.0003688.g003
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There was a negative correlation between the number of years since the start of ivermectin

treatment and the proportion of infected and infective flies as measured from all those dissect-

ed, including the nullipars (Table 1) (infected: rs = –0.717, p = 0.045; infective: rs = –0.654,

p = 0.078) and parous flies (infected: rs = –0.700, p = 0.188; infective: rs = –0.667, p = 0.219)

(Fig 4), but this reached statistical significance only for the overall proportion infected.

Therapeutic coverage (the proportion of the overall population treated with ivermectin) for

all villages was rarely below 60%. Coverage in Asubende, Pillar 83 and Gyankobaa had steadily

increased since the beginning of mass treatment implementation, whilst Agborlekame, Dodi

Papase, and Bosomase appeared to experience a recent decreasing trend in treatment coverage

(Fig 5).

Human Exposure
Monthly infective biting rates and monthly transmission potentials calculated from host-seek-

ing flies only were zero in all villages except for Bosomase and Gyankobaa, the villages most re-

cently incorporated into the CDTI programme. These transmission indices were also negative

Fig 4. Proportions of infected and infective flies (assessed by heads and thoraces dissection) in study villages and years of ivermectin treatment.
Infected flies (green bars) are those with any larval stage ofOnchocerca volvulus; infective flies (blue bars) are those harbouring L3 larvae in heads and/or
thoraces. Error bars are exact 95% confidence intervals. The results for Bosomase include the Bellec-caught flies obtained during the pilot study conducted
at Bosomase in January–February 2006.

doi:10.1371/journal.pntd.0003688.g004
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for Asubende, as the only fly identified as infective was an ovipositing blackfly caught using a

Bellec trap, rather than a host-seeking fly.

Monthly infective biting rates varied greatly between villages, seasons, catching techniques

and vector species (Table 2). In Bosomase, for human and cattle-seeking catching methods,

these rates ranged from 0 to 42.2 infective bites/host/month, with higher values in the wet sea-

son than in the dry season. In the wet season of 2009, the forest form of S. sanctipauli was the

main vector recorded in Bosomase and the only species with infective larvae, whilst in the dry

season of 2010, S. yahense was the main vector species harbouring infective larvae (Table 2). At

Gyankobaa, only 11 flies were collected in the dry seasons of 2010 and 2011 (S2 Table), all

from Bellec traps, but in the wet season of 2009, the infective biting rates ranged from 38.9 in-

fective bites/person/month, caught by vector collectors, to 50.4 infective bites/cow/month, for

Fig 5. Therapeutic coverage of ivermectin treatment in all study villages. The plots show the percentage of the overall population treated at each
ivermectin round since mass ivermectin distribution began: (A) Asubende and (B) Agborlekame in the Brong-Ahafo Region; (C) Asukawkaw Ferry, (D) Dodi
Papase and (E) Pillar 83 in the Volta Region; (F) Bosomase in theWestern Region, and (G)Gyankobaa in the Ashanti Region. The dashed lines are the best
fit least squares polynomial functions to the data, presented to facilitate visual inspection of the coverage trends. Biannual ivermectin distribution started in
2009 in Asubende, Agborlekame and Gyankobaa, whilst annual distribution has continued in the remaining villages.

doi:10.1371/journal.pntd.0003688.g005
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flies collected in the cow-baited tents (Table 2). Simulium sanctipauli flies harboured infective

larval stages across all catching techniques at Gyankobaa indicating that this species was able

to pick up infections from humans (although they would later attempt to feed on a non-human

host), whereas infective S. damnosum s.s./S. sirbanum were only caught in the man-baited

tents or by vector collectors, contributing both to transmission from humans to flies and from

flies to humans. However, the overall sample sizes of S. damnosum s.s./S. sirbanum at Gyanko-

baa from the wet season of 2009 were low, with only 35, 4 and 13 S. damnosum s.s./S. sirbanum

caught and dissected for infection from the vector collectors, human-baited and cow-baited

tents, respectively.

The number of L3 larvae recorded varied between villages, seasons and catching techniques

(S2 Table). The WHO states that a level of less than one L3 per 1,000 parous flies is required to

control onchocerciasis transmission [11]. Gyankobaa in the wet season had levels of over 100

L3s per 1,000 parous flies whilst at Bosomase in the dry and wet season these were more than

350 and 250 L3s per 1,000 parous flies respectively (Fig 6A). Both these villages had not been

included in the former OCP and were incorporated into the CDTI programme more recently

in 2006 for Gyankobaa and 2003 for Bosomase. Asubende was just above this level, with 1.35

L3/1,000 (95% CI: 0–4.0) ovipositing (of which not all would be parous) flies (Fig 6B). This is

despite 24 years of ivermectin treatment at the time of sampling, but the infection leading to

this result was detected in an ovipositing rather than in a host-seeking fly, with 0 L3/1,000

host-seeking parous flies.

Combining L3 numbers and infective biting rates for the different vector species across trap-

ping techniques for Gyankobaa and Bosomase resulted in transmission potentials ranging

from 0 to 422.1 L3/host/month (Table 3). All flies at Asubende were S. damnosum s.s./S. sirba-

num, but at Bosomase and Gyankobaa vector composition varied between seasons and

Table 2. Monthly Infective Biting Rates (MIBRs) of host-seeking blackflies by locality, season, trapping technique and species.

Region Village Season Trapping

Method

S. damnosum

s.l. (average)

S. damnosum

s.s. /S.

sirbanum

S. soubrense

Beffa form

S. squamosum S. yahense S. sanctipauli

Western Bosomase WetAug
2009

V/C 42.21 - - - - 42.21

Human-tent 0 - - 0 - 0

Cow-tent 17.22 - - - - 17.22

Host-seeking 18.70 - - 0 - 18.70

Dry Feb
2010

V/C 0 - - - 0 0

Human-tent 6.47 - - - 0 7.14

Cow-tent 18.43 - - - 16.98 0

Host-seeking 7.36 - - - 4.99 2.48

Ashanti Gyankobaa WetAug
2009

V/C 38.89 7.53 - 0 0 28.60

Human-tent 42.82 8.50 - 0 0 34.30

Cow-tent 50.44 0 - 0 0 51.09

Host-seeking 43.99 6.80 - 0 0 37.17

V/C = vector collector.

The values for V/C and Human-tent indicate infective bites per person per month; the values for Cow-tent are infective bites per cow per month; the

values for Host-seeking are the average values per host per month.

Although flies harbouring O. volvulus were caught at both Asubende and Asukawkaw Ferry, the infected/infective S. damnosum s.s./S. sirbanum fly at

Asubende was ovipositing and not host-seeking and therefore does not contribute to MIBR; the S. soubrense Beffa form fly at Asukawkaw Ferry was

infected but not infective.

doi:10.1371/journal.pntd.0003688.t002
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catching techniques (S1 Table) [26]. Simulium sanctipauli was the most important vector spe-

cies at both Bosomase and Gyankobaa in the wet seasons, whilst S. yahense played a more im-

portant role in transmission at Bosomase in the dry season of 2010. The importance of vector

species at Bosomase in the dry season also differed between catching techniques, with S. sancti-

pauli having higher transmission potentials by flies caught in the human-baited tents, and S.

yahense having higher transmission potentials by flies caught in the cow-baited tents (Table 3).

For all infected flies successfully identified to species (95 out of 97), the arithmetic mean

number of O. volvulus larvae per infected fly varied greatly and statistically significantly among

species, with S. damnosum s.s./S. sirbanum harbouring 1.33 larvae per infected fly ± 0.33 SE; S.

sanctipauli 3.61 ± 0.40 and S. yahense 17.86 ± 4.32 (Kruskal Wallis χ2 = 15.50, d.f. = 2,

p<0.001). The mean number of L3s per infective fly also differed statistically significantly

among vector species, with S. damnosum s.s./S. sirbanum harbouring 1.33 L3s per infective

fly ± 0.33 SE; S. sanctipauli 2.73 ± 0.50 and S. yahense 17.67 ± 9.23 (Kruskal Wallis χ2 = 6.83, d.

Fig 6. Numbers of L3 larvae per 1,000 parous (host-seeking) flies or per 1,000 ovipositing flies. Data are presented for the three villages where
infectiveOnchocerca volvulus larvae were detected during the wet and/or dry seasons of 2009 to 2011. In all cases, except Asubende parous flies, the
number of (A)O. volvulus L3 larvae per 1,000 parous or (B)O. volvulus L3 larvae per 1,000 ovipositing flies exceeds the World Health Organization (WHO)
threshold for one L3 per 1,000 (parous) flies. In Asubende the value was 1.4 L3 per 1,000 ovipositing flies. Error bars are 95% CI calculated using
percentile bootstrapping.

doi:10.1371/journal.pntd.0003688.g006
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f. = 2, p = 0.033). These differences were also observed when analysed at the village level, con-

trolling for variations in local transmission levels, with S. yahense having significantly higher

infection intensities at Bosomase in the infected flies (MannWhitney U = 8.50, d.f. = 46,

p<0.001). The difference had only borderline significance in the infective flies (U = 0.00, d.f. =

33, p = 0.057), as there was only one infective S. yahense with 17 L3s, despite the large differ-

ence between this and the mean in S. sanctipauli of 2.12 ± 0.56 L3/infective fly.

Onchocerca Infections in Abdomens
Overall, 258 of the 11,122 (2.3%) abdomens tested for Onchocerca infections were positive. The

majority of these (240) were from Gyankobaa or Bosomase; however, there was also one posi-

tive result from each of Agborlekame, Dodi Papase and Pillar 83, which had been negative by

dissection of heads and thoraces. The number of infected abdomens in vector collector flies

was lower (0.8%) than that in the flies caught using all other methods combined (2.3%, χ2 =

58.0, d.f. = 1, p<0.001), suggesting that the infections did not originate from the flies acquiring

an infectious blood meal with microfilariae at the point of collection.

Discussion

As the goals of onchocerciasis control programmes shift from morbidity reduction towards

elimination, knowledge of ongoing transmission by local vector species is urgently required

[8,9,10]. This enables entomological monitoring of programmes’ progress, and helps to under-

stand the determinants of persistent transmission despite prolonged control interventions. We

report O. volvulus transmission, in Ghanaian communities with different treatment and con-

trol histories, and its variation according to simuliid species composition, vector trapping tech-

nique and season.

Table 3. Monthly Transmission Potentials (MTPs) of host-seeking blackflies by locality, season, trapping technique and species.

Region Village Season Trapping

Method

S. damnosum s.l.

(average)

S. damnosum s.s. /S.

sirbanum

S. soubrense

Beffa form

S.

squamosum

S.

yahense

S.

sanctipauli

Western Bosomase Wet V/C 422.11 - - - - 422.11

Aug

2009

Human-tent 0 - - 0 - 0

Cow-tent 60.27 - - - - 60.27

Host-seeking 138.36 - - 0 - 138.36

Dry V/C 0 - - - 0 0

Feb

2010

Human-tent 6.47 - - - 0 7.14

Cow-tent 340.98 - - - 314.00 0

Host-seeking 93.25 - - - 92.24 2.48

Ashanti Gyankobaa Wet V/C 85.57 15.06 - 0 0 64.30

Aug

2009

Human-tent 236.62 8.50 - 0 0 222.95

Cow-tent 141.25 0 - 0 0 143.04

Host-seeking 152.49 10.20 - 0 0 140.12

V/C = vector collector.

The values for V/C and Human-tent indicate no. L3 per person per month; the values for Cow-tent are L3 per cow per month; the values for Host-seeking

are the average values per host per month.

Although flies harbouring O. volvulus were caught at both Asubende and Asukawkaw Ferry, the infected/infective S. damnosum s.s./S. sirbanum fly at

Asubende was ovipositing and not host-seeking and therefore does not contribute to MTP; the S. soubrense Beffa form fly at Asukawkaw Ferry was

infected but not infective.

doi:10.1371/journal.pntd.0003688.t003
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Factors influencing the feasibility of achieving elimination with the current ivermectin treat-

ment strategy include baseline levels of endemicity, patterns of treatment coverage and compli-

ance, parasite ivermectin susceptibility, duration and effectiveness of former vector control,

seasonality of transmission in relation to ivermectin distribution, parasite immigration in flies

or people, vector species mix and their associated vectorial capacity and competence for O. vol-

vulus [63].

Potential for Infection from Humans to Flies and Flies to Humans
We have documented active onchocerciasis transmission, raising questions regarding the po-

tential for CDTI alone to interrupt transmission under the treatment frequency and coverage

levels commonly achieved in Africa. We report high monthly infectious biting rates and trans-

mission potentials (measuring transmission from vectors to humans) for the communities

most recently incorporated into the CDTI strategy. We also report infections in fly abdomens

from all study villages, providing evidence of transmission from humans to flies. These infec-

tions were identified molecularly as O. volvulus. Infection levels above the WHO threshold of

one L3 larva per 1,000 parous flies were recorded in the villages of Bosomase and Gyankobaa

which started receiving treatment, respectively, in 2003 and 2006, i.e. 6 and 3 years prior to our

entomological study. The WHO’s value forms part of the criteria for achieving the operational

elimination thresholds for treatment cessation and commencement of surveillance [8], which

in some West African foci have been reached after 14–17 years of annual (or biannual) iver-

mectin distribution [3,4]. This threshold was also exceeded in Asubende, which by the time of

our study had received 24 years of ivermectin. Clear interpretation of this result is difficult

since it is based on one infective fly caught in a Bellec trap, and flies using local breeding sites

may originate from afar. However, there is also evidence from other studies that transmission

in Asubende is continuing at a rate of>40 L3/person/month in some months (F.D.B. Veriegh,

pers. comm.). Similarly, after 15 [64] and 17 [65] years of CDTI in Cameroon, or 20 years in

the Central African Republic [66] have not resulted in interruption of transmission. Due to

these and similar studies, there is a strong call for introducing more frequent (e.g. biannual)

ivermectin treatments (or other strategies) if elimination is to be attained [67].

Fly Infections Are due toO. volvulus
In regions in North Cameroon, approximately 70–90% of the filarial larvae in S. damnosum s.l.

caught biting man were O. ochengi [68,69]. Given that cattle are present in some of our study

villages (e.g. Agborlekame (~300 cows) and Asukawkaw Ferry (~500 cows), that S. damnosum

s.l. flies feed on a range of blood hosts, and that 20% of the infective flies were caught using cat-

tle-baited tents, we anticipated that we might have identified cattle-borne Onchocerca species

such as O. ochengi but we only found O. volvulus. Over three quarters of the larvae had defini-

tive O. volvulus identifications, and 96% of the unidentified larvae were from blackflies which

had also contained known O. volvulus (of the same larval stage). No other species were identi-

fied and we are therefore confident that all of the Onchocerca larvae originated from flies in-

fected with O. volvulus. This indicates active onchocerciasis transmission from humans to flies

(early larval stages or infective flies attempting to feed on cattle) and from flies to humans (in-

fective larvae in flies attempting to feed on humans). During the OCP, transmission potentials

had been initially calculated on the assumption that all larvae would be O. volvulus; these

‘crude’ transmission potentials were subsequently corrected when tools for molecular identifi-

cation of parasite larvae became available revealing that a geographically variable proportion of

infective flies harboured non-volvulus Onchocerca spp. of zoonotic origin [70].
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Factors Impacting on Persistent Transmission
In 1980 (pre-ivermectin and pre-vector control), over 75% of the Asubende population were

infected with microfilariae, and in 1987, prior to the ivermectin community trials, an infection

prevalence of 80% was recorded [16], only slightly higher than that of Agborlekame (both in

the Brong-Ahafo region). These communities were highly hyperendemic at baseline. The ab-

sence of infective flies observed at Agborlekame may be attributable to our low sample sizes,

and/or recent treatment, rather than true lack of transmission. This conjecture is supported by

on-going entomological studies (F.B.D. Veriegh pers. comm.) indicating high levels of L3 infec-

tions in flies from Agborlekame reaching 68 L3/person/month. This is further supported by

our molecular analyses of fly abdomens, which revealed one infected fly in 83 flies analysed. At

Asubende, biting rates have returned to pre-vector control levels [26], suggesting ecological

conditions propitious for continuing transmission. Asubende has received regular annual treat-

ment since 1987, and bi-annual treatment since 2009, with the most recent treatment round

just 2 months before our sample collection. The village had a population of only 88 inhabitants

at the time of sampling, and inspection of the community distributor’s notebooks and district

records indicated a high therapeutic coverage. Therefore, in addition to the return of high bit-

ing rates and the possibility of infective flies migrating into the area [71], the potential for sub-

optimal responses to ivermectin, perhaps suggesting decreased drug susceptibility, cannot be

ignored. After 20 years of annual ivermectin administration, epidemiological assessments in 19

communities in Ghana, including Asubende, indicated a persistent reservoir of microfilarial in-

fection [18,20].

In contrast, in the three Volta Region villages, transmission was low, despite a shorter histo-

ry of vector control and ivermectin treatment than in Brong-Ahafo. The lack of infections may

be attributable to the success of the OCP vector control strategy, which eliminated the Djodji

form of S. sanctipauli [72], one of the S. damnosum complex species with the highest vector

competence. Previous studies had shown that the Djodji form of S. sanctipauli carried, on aver-

age, three times as many L3 larvae per 1,000 biting flies as S. squamosum [73]. The reduction in

biting rates associated with the disappearance of the Djodji form of S. sanctipauli [26] may also

explain the reduction in transmission. Ivermectin treatment records also indicate that Pillar 83

had repeated ivermectin treatments in the years from 1993 to 1997 (potentially rapidly reduc-

ing levels of transmission in this community at the early stages of ivermectin control), followed

by annual CDTI.

At Bosomase and Gyankobaa, which never received vector control and were incorporated

into CDTI only recently, high levels of active transmission are still occurring, despite their

lower baseline levels of infection intensity and prevalence, and current biannual or annual iver-

mectin treatment. In Gyankobaa, the most recent round of ivermectin distribution had taken

place over a year before our sample collection date, providing ample opportunity for the reap-

pearance of microfilariae in the hosts’ skin and their ensuing transmission [74,75]. In Boso-

mase, the high infection levels observed in the wet season in August 2009 are probably

explicable by the missed annual treatment in that year, highlighting the importance of under-

standing the programmatic determinants of persistent transmission.

The Role of Simuliid Species Composition and Vectorial Competence
and Capacity
The transmission in the dry season of 2010 at Bosomase is of concern, with flies collected just

one month after ivermectin treatment. However, seasonal variations (transmission levels in the

2009 wet season were higher than in the 2010 dry season), and in vector species composition

and competence may also play a role in explaining the reported transmission patterns.
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In the dry season, monthly transmission potentials were driven by S. yahense, with a higher

number of L3s per infective fly than the extant form of S. sanctipauli. In contrast, the higher

monthly infective biting rates in the wet season were driven by higher numbers of infective S.

sanctipauli flies, despite their lower numbers of L3s per infective fly. Although not as anthropo-

phagic and efficient a vector as the eliminated Djodji form, the forest form of S. sanctipauli has

previously been demonstrated to be a highly efficient vector. In an area environmentally similar

to, and just north of, Bosomase, a mean of 377 L3 in 1,000 parous flies, and 122 L3 per 1,000

biting flies (with 44% of parous flies infected) were recorded [76]. Even higher values, of 616 L3

per 1,000 parous flies have been reported in other African localities [56]. Overall, we observed

lower infection rates than these, potentially due to the high therapeutic coverage of annual

CDTI in this community. However, some reductions attributed to CDTI may actually be due

to river pollution, lowering fly breeding success and associated transmission, particularly for S.

sanctipauli [77], further supporting our previous biting rate findings and potential factors in-

volved [26].

The influence of vector competence on transmission observed in Bosomase was also seen in

Gyankobaa, where S. yahense, and to a lesser extent S. squamosum, were responsible for lower

monthly transmission potentials due to lower biting rates and parous biting rates. In contrast,

the forest form of S. sanctipauli, contributed to high numbers of L3/person/month due to high

biting rates. Consequently, although both Bosomase and Gyankobaa have a shorter history of

CDTI, the high transmission parameters recorded here for the vector species prevailing in this

area must be emphasised. In Gyankobaa, infection levels (numbers of L3/1,000 parous flies)

were 129 times as high, and in Bosomase, 291 to 365 times as high, as the WHO threshold. In

both localities, the greatest proportion of L3 were found in S. sanctipauli, a species poorly or

not at all represented in current transmission models.

Transmission models for African onchocerciasis have been mostly parameterised using S.

damnosum s.s./S. sirbanum data [6,63,78,79,80,81,82,83] to reflect transmission dynamics in

savannah areas suffering from severe ocular sequelae due to onchocerciasis. Exceptions to

these models are the studies by Davies (1993) [84], based on transmission of forest onchocerci-

asis by S. soubrense B sensu Post; some quantitative analyses on other S. damnosum complex

species, including S. leonense and S. squamosum B [85,86], and the recent modelling study of

the effect of climate change on onchocerciasis transmission in Ghana and Liberia, including S.

soubrense [87]. Our findings highlight that data on vector competence and vectorial capacity

for O. volvulus for other important vector species are crucially needed, particularly as regions

with diverse and seasonally varying simuliid vector composition strive towards elimination.

Implications of Host-Dependent and Host-Independent Trapping
Methods for Transmission Monitoring and Surveillance
Approximately 40% of the flies were caught on Bellec traps, a similar proportion to that caught

by the traditional OCP vector collector method, resulting in roughly equal numbers caught by

host-independent and host-dependent methods. Light traps performed poorly, despite previ-

ous success at trapping S. squamosum [29] and other members of the S. damnosum complex

[30] in Ghana. The prevalence of infected and infective flies, assessed by dissection, was similar

among our host-dependent and host-independent catching techniques. Bellec-caught flies had

higher infection prevalence, measured by DNA analyses of the abdomens, than the vector col-

lector-caught flies. Positive abdomens in ovipositing flies could originate from microfilariae in-

gested with the blood meal (that did not escape the peritrophic matrix)—indicating

transmission from humans to flies, and/or from L3 larvae migrating out of the thorax—indicat-

ing potential transmission from flies to humans. These results suggest that using oviposition
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(Bellec) traps in breeding sites along rivers close to villages, could augment (and perhaps re-

place) the more labour-intensive methods of human vector collection for monitoring vector in-

fection levels. Large numbers of flies are required by techniques such as pool-screening [88],

and with decreasing infection rates, the numbers to power transmission studies seeking to

quantify reductions in transmission may need to be even larger [89]. Potential replacements

for human landing catches, such as the Esperanza Window Trap, have been developed for S.

ochraceum s.l. (the vector in Mexico and Guatemala) [90,91] and evaluated for host-seeking

flies in Africa [92]. Oviposition traps have the added advantage that even nulliparous flies

could contribute to the quantification of infection in thoraces, as sufficient time between an in-

fected bite and oviposition elapses allowing any potential microfilariae to establish as L1s with-

in the flies. The O. volvulus larvae thus collected could also be tested for ivermectin resistance

markers once field probes are developed, helping in the monitoring and evaluation of transmis-

sion and of the potential spread of decreased ivermectin efficacy. This will become particularly

pertinent with the increasing need for large-scale entomological evaluation of interventions as

programmes strive for elimination, which will raise ethical concerns surrounding the wide-

spread use of human landing catches. The host-independent Bellec traps could also be used in

wider geographical perimeters during the post-MDA surveillance phase to complement more

human exposure-focused methods in sentinel sites.

Study Limitations
As vector competence is known to vary between seasons [93], blackfly collection was per-

formed in both wet and dry seasons at five of the seven locations. (Due to incorporation at a

later stage in the study of Asubende and Agborlekame, data were only collected during the dry

season in these communities.) However, due to low blackfly catches at four of the study loca-

tions in one or the other of the seasons, Bosomase was the only location where substantial data

were collected during both seasons. Although this reflects a lack of biting or ovipositing black-

flies at the sampling times in these localities during these seasons, our results may not reflect

true absence of simuliids and of any associated transmission for the whole season. This is par-

ticularly highlighted by our inability to detect Onchocerca larvae at Agborlekame, despite re-

cent observations of on-going transmission (F.B.D. Veriegh, pers. comm.). Indeed, when

blackfly abdomens were analysed, at least one positive result was obtained for O. volvulus infec-

tion in each of the villages assessed, indicating some level of active transmission. A potential

limitation of analysing fly abdomens by molecular means is that higher levels of infection in

vector collector-caught flies might be expected if any of the vector collectors caught the flies

after the start of feeding and were themselves infected with microfilariae. There was no evi-

dence that O. volvulus-positive abdomens were caused by microfilariae from the vector collec-

tors as proportions of infected blackfly abdomens were significantly lower in the vector

collector-caught flies than in those obtained by the remaining trapping methods.

Summary

1. Evidence of active O. volvulus transmission has been documented in seven Ghanaian com-

munities with different histories of vector and ivermectin control.

2. Levels of O. volvulus infection with L3 larvae in parous flies were well above the WHO

threshold for transmission control in two of these communities (Bosomase and

Gyankobaa).
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3. At Asubende, an infective ovipositing fly was found. In this locality, high vector density was

recorded, with biting rates similar to pre vector control levels. Ecological conditions propi-

tious to intense transmission remain in this formerly highly hyperendemic focus.

4. Complementary or alternative treatment strategies may be required to interrupt transmis-

sion in these areas, particularly as the WHO roadmap aims for elimination of the infection

reservoir in certain African countries by 2020.

5. The local and seasonal mix of vector species influence transmission indices. Transmission

dynamics models should be parameterised with vectorial competence and capacity data ac-

cording to the local S. damnosum s.l. species composition. Each species will contribute dif-

ferentially to overall transmission potentials and may respond differently to control

interventions.

6. The use of oviposition (Bellec) traps could be used to enhance (or ultimately replace) the

traditional OCP vector collection methods for the purposes of transmission monitoring and

evaluation, parasite genetic studies for ivermectin susceptibility or determination of the ex-

tent of transmission zones, and post-MDA surveillance.
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