3,011 research outputs found

    Kinetic Ballooning Mode Under Steep Gradient: High Order Eigenstates and Mode Structure Parity Transition

    Get PDF
    The existence of kinetic ballooning mode (KBM) high order (non-ground) eigenstates for tokamak plasmas with steep gradient is demonstrated via gyrokinetic electromagnetic eigenvalue solutions, which reveals that eigenmode parity transition is an intrinsic property of electromagnetic plasmas. The eigenstates with quantum number l=0l=0 for ground state and l=1,2,3…l=1,2,3\ldots for non-ground states are found to coexist and the most unstable one can be the high order states (l≠0l\neq0). The conventional KBM is the l=0l=0 state. It is shown that the l=1l=1 KBM has the same mode structure parity as the micro-tearing mode (MTM). In contrast to the MTM, the l=1l=1 KBM can be driven by pressure gradient even without collisions and electron temperature gradient. The relevance between various eigenstates of KBM under steep gradient and edge plasma physics is discussed.Comment: 6 pages, 6 figure

    Thermal stability of infrared stimulated luminescence of sedimentary K-feldspar

    Get PDF
    The thermal stability of the infrared stimulated luminescence (IRSL) signal measured at 50 °C as a function of IR stimulation time was investigated using KF grains extracted from sediments from central China. A dependence of thermal stability of IRSL signal on IR stimulation time and stimulation temperature were observed in pulse annealing studies. Relatively lower thermal stability is given by the initial part of the IRSL measured at 50 °C, than the later part of IRSL curve. Based on these observations, the thermal stability of the post-IR IRSL signal stimulated at elevated temperatures (100–200 °C) was also investigated. It was found that at least two groups of traps (shallow and deep) are associated with the IRSL and post-IR IRSL signals. The IRSL signal obtained at 50 °C is mainly from the shallow traps while the post-IR IRSL obtained at elevated temperatures is mainly from the deep traps. The kinetics parameters obtained using pulse annealing test indicate that the shallow IRSL traps are probably associated with the ∼300–350 °C TL peak and the deep traps are probably associated with the ∼400 °C TL peak. The shallow traps (∼350 °C TL peak) are associated with those easy-to-fade traps and the deep traps (∼400 °C TL peak) are associated with hard-to-fade traps

    Next-to-leading order QCD corrections to tZtZ associated production via the flavor-changing neutral-current couplings at hadron colliders

    Full text link
    We present the complete next-to-leading order (NLO) QCD corrections to tZtZ associated production induced by the model-independent tqgtqg and tqZtqZ flavor-changing neutral-current couplings at hadron colliders, respectively. Our results show that, for the tuZtuZ coupling the NLO QCD corrections can enhance the total cross sections by about 60% and 42%, and for the tcZtcZ coupling by about 51% and 43% at the Tevatron and LHC, respectively. The NLO corrections, for the tugtug couplings, can enhance the total cross sections by about 27%, and by about 42% for the tcgtcg coupling at the LHC. We also consider the mixing effects between the tqgtqg and tqZtqZ couplings for this process, which can either be large or small depending on the values of the anomalous couplings. Besides, the NLO corrections reduce the dependence of the total cross sections on the renormalization or factorization scale significantly, which lead to increased confidence on the theoretical predictions. And we also evaluate the NLO corrections to several important kinematic distributions.Comment: Published version in Phys. Rev.

    Further studies on the relationship between IRSL and BLSL at relatively high temperatures for potassium-feldspar from sediments

    Get PDF
    In optical dating of potassium-feldspar, the luminescence signals can be stimulated by both infrared (IR) light and blue light (BL). To develop reliable dating methods using different stimulation light sources for feldspars, it is important to understand the sources of the traps associated with the infrared stimulated luminescence (IRSL) and blue light stimulated luminescence (BLSL) and their relationship. In this study, we explored the luminescence characteristics of IRSL and BLSL at different stimulation temperatures (from 60 °C to 200 °C) and their relationship based on five sets of experiments, i.e. post-IR BLSL, post-BL IRSL experiments, pulse annealing test, dose-response test and laboratory fading rate test. Our results suggest that the luminescence characteristics of IRSL and BLSL and their relationship are dependent on stimulation temperature. For IR stimulation at a relatively high temperature of 200 °C, at least two components of IRSL signals are involved in the process. One component of IRSL signals can be easily bleached by BL stimulation at 60 °C, while the other is relatively hard to be bleached by BL stimulation at 60 °C. The two components have different luminescence properties, such as thermal stability, dose-response and laboratory fading rate

    Observation of unstable fast component in OSL of quartz

    Get PDF
    Optically stimulated luminescence (OSL) dating has been applied to quartz grains extracted from a sedimentary layer containing stone tools from the bank of Salawusu River, Mu Us desert in central China. Severe age underestimation was observed by applying the single-aliquot regenerative dose (SAR) dating method when compared with the isochron infrared stimulated luminescence (iIRSL) dating results using potassium-rich feldspar grains of different grain sizes. Preheating plateau and dose recovery tests suggest that the SAR protocol is robust for this sample. Component resolving indicates that the OSL signals were dominated by the fast component. However, the fast component is thermally unstable as shown by pulse-annealing measurements and single-grain study. This leads to OSL age underestimation. To overcome this problem, a method was proposed by combining equivalent dose (De) determination and pulse-annealing experiments using single-grain measurements to select only those grains with the thermally stable signals. For those quartz grains with thermally stable OSL signals, the ages obtained are consistent with iIRSL results

    Next-to-leading order QCD corrections to a heavy resonance production and decay into top quark pair at the LHC

    Full text link
    We present a complete next-to-leading order (NLO) QCD calculation to a heavy resonance production and decay into a top quark pair at the LHC, where the resonance could be either a Randall-Sundrum (RS) Kaluza-Klein (KK) graviton GG or an extra gauge boson Z′Z'. The complete NLO QCD corrections can enhance the total cross sections by about 80%−100%80\%- 100\% and 20%−40%20\%- 40\% for the GG and the Z′Z', respectively, depending on the resonance mass. We also explore in detail the NLO corrections to the polar angle distributions of the top quark, and our results show that the shapes of the NLO distributions can be different from the leading order (LO) ones for the KK graviton. Moreover, we study the NLO corrections to the spin correlations of the top quark pair production via the above process, and find that the corrections are small.Comment: Published version in PR

    Overcoming Environmental Dose Rate Changes in Luminescence Dating of Waterlain Deposits

    Get PDF
    This study investigates lacustrine and fluvial sediments on the Sala Us River in the Mu Us Desert in central north China. Significant changes in environmental dose rate in part of the section could be shown to have occurred from measurements of the present day radioactivity and by the age reversal for some samples that had been dated by optically stimulated luminescence (OSL) measurements on quartz. These changes in dose rate can be attributed to recent uptake of radioactive elements found in the sediments; this resulted in significant underestimation of the OSL ages. In this study, the new isochron method using K-feldspar grains has been applied to overcome the effects of changes in dose rate. Calculations are used to show that changes in the environmental dose rate factors, i.e. K, U, Th, water content and cosmic ray flux, and disequilibrium in the U and Th decay chains, e.g. radon escape, have a negligible effect on the isochron age. After applying the new isochron method, the effects of changes in dose rate caused by recent uptake of radioactive elements and changes in past water content were effectively overcome and true ages are obtained; this was verified by repeating the luminescence isochron measurements on samples of overlying and underlying sediments.link_to_subscribed_fulltex
    • …
    corecore