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Thermal stability of infrared stimulated 
luminescence of sedimentary K-feldspar  

Bo Li and Sheng-Hua Li 

Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong 

Kong, China 

 

Abstract 

The thermal stability of the infrared stimulated luminescence (IRSL) signal measured at 50 °C 

as a function of IR stimulation time was investigated using KF grains extracted from sediments from 

central China. A dependence of thermal stability of IRSL signal on IR stimulation time and 

stimulation temperature was observed in pulse annealing studies. Relatively lower thermal stability is 

given by the initial part of the IRSL measured at 50 °C, than the later part of IRSL curve. Based on 

these observations, the thermal stability of the post-IR IRSL signal stimulated at elevated 

temperatures (100-200°C) was also investigated. It was found that at least two groups of traps 

(shallow and deep) are associated with the IRSL and post-IR IRSL signals. The IRSL signal obtained 

at 50°C is mainly from the shallow traps while the post-IR IRSL obtained at elevated temperatures is 

mainly from the deep traps.  The kinetics parameters obtained using pulse annealing test indicate that 

the shallow IRSL traps are probably associated with the ~300-350⁰C TL peak and the deep traps are 

probably associated with the ~400⁰C TL peak. The shallow traps (~350⁰C TL peak) are associated 

with those easy-to-fade traps and the deep traps (~400⁰C TL peak) are associated with hard-to-fade 

traps.  

Keywords: K-feldspar, luminescence, thermal stability, pulse annealing, anomalous fading. 
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1 Introduction 

The infrared (IR) stimulated luminescence (IRSL) from sedimentary feldspar has been used 

for optical dating of sediment for the last two decades since the first report of optical stimulation 

spectra of feldspar by Hütt et al (1988). One of the critical assumptions in optical dating is that the 

trapped electrons used for dating are stable over the geological burial period. It is thus important to 

ensure that the IRSL signals are coming from deep traps with a long kinetic lifetime at ambient 

temperature (e.g. ~15°C). There have been several studies of the thermal stability of the IRSL signal 

from potassium-rich feldspar (KF) grains extracted from sediments (Li et al., 1997; Murray et al., 

2009). It has been shown that the IRSL traps are associated with deep traps with a thermal depth of 

~1.7 eV (Li et al., 1997), which have a lifetime of ~109 years. According to their isothermal studies, 

Murray et al. (2009) suggested that the IRSL traps of their KF sample is mainly originated from deep 

traps associated with the ~410°C peak. These studies focused on the initial part of the IRSL signal 

obtained by stimulating at ~50°C.  

Although previous studies suggested that the IRSL signal from KF is thermally stable enough 

to allow for dating sediments over millions years (e.g. Li et al., 1997; Murray et al., 2009), the 

application of IRSL dating of KF has been hampered by the anomalous fading effect (Wintle, 1973), a 

phenomenon that the TL and IRSL signals decrease with storage at room temperature as a result of 

tunneling recombination (Spooner, 1992, 1994; Huntley and Lamothe, 2001; Huntley, 2006; Huntley 

and Lian, 2006; Li and Li, 2008).  

Recent studies suggested different luminescence behaviours for the IRSL signal as a function 

of IR stimulation time (Thomsen et al., 2008; Li, in press). Particularly, it was observed that the initial 

part of the IRSL signal has a higher anomalous fading rate when compared to the later part (Thomsen 

et al., 2008), which was explained as that the emission of IRSL is a result of electron-hole 

recombination via tunnelling process under IR stimulation. This observation has led to the 

development of post-IR IRSL dating method, in which an IRSL bleaching at low temperature (~50°C) 
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is applied before a high temperature (>200°C) IRSL measurement to reduce the fading rate of feldspar 

(Thomsen et al., 2008; Buylaert et al., 2009). In a recent study, Li (accepted) observed a strong 

dependence of thermal assistant energy on IR stimulation time; this was explained as that the initial 

part of IRSL signal is dominated by tunnelling recombination while the later part is dominated by 

thermal assisted recombination. All these studies indicate that different recombination processes are 

involved. It is thus necessary to further investigate the source of IRSL, as a function of IR stimulation 

conditions (i.e. stimulation time and temperature), before a reliable IRSL signal could be used for 

dating.  

In this study, the thermal stability of the IRSL signal as a function of IR stimulation time is 

investigated using KF grains extracted from sediments from China. The trap parameters of the IRSL 

and post-IR IRSL signal stimulated at elevated temperatures (100-200°C) were also measured using 

pulse annealing with various heating rates. The relationship between anomalous fading, 

thermoluminescence (TL) and IRSL signal from KF are studied. 

2 Samples and experimental details 

Two Aeolian sedimentary samples (Sm1 and Sm7) from the transition zone between the Mu 

Us Desert and the Loess plateau in central China were used in this study (Sun et al., 1999). The age of 

Sm1 (~10 ka) has been determined using OSL dating of quartz and isochron IRSL (iIRSL) dating of 

K-feldspar (Li et al., 2008). The age of Sm7 (~440 ka) was estimated by correlation between 

stratigraphy and OIS stages (Li and Li, 2008). Previous study on the equivalent dose of the samples 

from the section suggested that the IRSL signal for sample Sm7 has reached an equilibrium state, i.e. 

the IRSL traps were in equilibrium between electron filling and escaping (or fading) (Li and Li, 

2008). This is so-called “field saturation” (Lamothe et al., 2003; Huntley and Lian, 2006).  

The samples were routinely treated with HCl and H2O2 to remove carbonate and organic 

matter in subdued red safe-light conditions. After drying, 150-180 µm grains were obtained by 
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sieving. The KF grains were separated using heavy liquids with a density of 2.58 g/cm3. The extracted 

KF grains were cleaned using 10% HF for 5 minutes. Aliquots containing several hundred grains were 

prepared by mounting the grains in a monolayer on a 9.8 mm diameter aluminum disc with 

“Silkospay” silicone oil. The IRSL measurements were made on an automated Risø TL-DA-12 reader 

equipped with IR diodes (880 nm, 40 mW/cm2) for stimulation. Irradiations were carried out within 

the reader using a 90Sr/90Y beta source. The IRSL and TL signals were detected using a 

photomultiplier tube with the IRSL passing through a filter pack containing Schott BG-39 and 

Corning 7-59 filters, which allows for a blue violet transmission (320-480 nm).  

3 Results 

3.1 Pulse annealing test of IRSL at low temperature  

A pulse annealing study was conducted to test whether there is a dependence of the thermal 

stability of IRSL signal on IR stimulation time. One IR-bleached aliquot of KF from sample Sm1 was 

given a regenerative dose of 38 Gy. It was first preheated at 250°C for 60 s, and then heated to a 

temperature T °C before the remaining IRSL signal (Lx) was measured at 50 °C for 100 s. Any 

sensitivity change was monitored by measuring the IRSL signal (Tx) from a test dose (12 Gy) after 

measurement of Lx. The same preheat condition (250°C for 60 s) was applied for the test dose IRSL 

measurement. This cycle was repeated by increasing the annealing temperature (T) from 160 to 

500 °C in steps of 20°C. Fig. 1 shows the normalized sensitivity-corrected IRSL signal (Lx/Tx) 

remained after each temperature. The IRSL signals at different IR stimulation time were calculated 

and were shown as different curves (Fig. 1). It is found that different parts of the IRSL signal have 

different pulse annealing patterns. Particularly, the initial parts start to decrease at a slightly lower 

temperature than the later parts, indicating a different thermal stability for them. It should be noted 

that, the decrease of the IRSL signal after annealing is unlikely to be that the preceding TL 

recombination has changed the IRSL recombination probability. In this pulse-annealing study for 

IRSL, a test dose was applied to monitor the sensitivity change (i.e. a result of changing 
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recombination probability), and any loss of IRSL due to changing recombination probability can be 

corrected by the test dose IRSL. This can be further supported by the observation that there is little 

dependent of De value on preheat temperature up to 300 °C for our samples (Li et al., 2007), which 

also rule out the contribution of IRSL signal from traps below 300°C. 

 

3.2 Pulse annealing test of post-IR IRSL at high temperatures 

It has been suggested that the post-IR IRSL measured at high temperatures (> 200°C) has a 

lower anomalous fading rate then the IRSL measured at low temperatures (~50°C) (Thomsen et al., 

2008; Buylaert et al., 2009). However, it is still not clear whether they come from the same group of 

traps or not. To understand the post-IR IRSL measured at high temperatures better, a pulse annealing 

procedure outlined in Table 1 was conducted. Different from Thomsen et al. (2008), instead of 

directly increasing the IR stimulation temperature to a higher temperature after an IRSL measurement 

at 50°C, we progressively increased the IR stimulation temperatures in steps of 50°C, so that the IRSL 

and post-IR IRSL at different stimulation temperatures could be obtained after the same pre-

treatments and using the same aliquot (Table 1). The normalized IRSL and post-IR IRSL curves 

obtained for each stimulation temperature were shown in Fig. 2(a). A significant increase in IRSL 

signal was observed when the stimulation temperature was increased, i.e. at 100 s (from 50 to 100 

⁰C), 200s (from 100 to 150 ⁰C) and 300s (from 150 to 200 ⁰C).  

In the pulse annealing study, an aliquot from sample Sm1 was first heated to 500 °C to 

empty all IRSL traps. It was then given a regenerative dose of ~38 Gy before a cut-heat to 

300°C. It is noted that the reason for using this cut-heat to 300°C prior to the pulse-annealing 

procedure is to ensure that the effect of the TL signal on the high-temperature post-IR IRSL signal is 

negligible. The aliquot was then heated to a temperature (T°C) before four IRSL measurements at 50, 

100, 150 and 200°C, respectively. After that, a test dose of ~12 Gy was given and the IRSL was 

measured at 50 and 200 °C, respectively, for monitoring any sensitivity change. This cycle was 
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repeated by increasing the annealing temperature T from 160 to 500°C in steps of 20°C. It is found 

that there is little dependence of sensitivity on IR stimulation temperature, i.e. there is little difference 

between the changes in test dose IRSL at 50°C (step10 in Table 1) and that at 200°C (step11 in Table 

1). Therefore, the test dose IRSL at 50°C (step10 in Table 1) was used to correct sensitivity changes 

for all the IRSL signals at different temperatures. To test the ability of the sensitivity correction by the 

test dose IRSL, a recycling measurement for the response of the 240°C annealing was applied at the 

end of the measurement of the pulse annealing cycle (i.e. the 500 °C annealing). A recycling ratio of 

0.95±0.02 was obtained, suggesting that the sensitivity changes can be corrected appropriately using 

this procedure.  

The sensitivity-corrected IRSL signal was plotted against annealing temperature in Fig. 2(b). 

The pulse annealing curve of the 50°C IRSL (blue curve) is identical to that shown in Fig. 1, although 

different preheating temperatures, i.e. 250 °C (Fig. 1) and 300 °C (Fig. 2), were used prior to 

annealing. This suggests that the preheating conditions up to 300°C have negligible effect to the 

pulse-annealing results. It is shown that the post-IR IRSL signals obtained at higher temperatures are 

more thermally stable than the IRSL signal measured at 50 °C (Fig. 2). The IRSL at 50°C start to 

decrease at ~300 °C, while the post-IR IRSL signal at 200°C is stable up to 350 °C. This result 

suggests that the IRSL and post-IR IRSL signals at elevated temperatures originated from different 

groups of traps with different thermal stabilities.  

 

3.3 Trap parameters of IRSL and post-IR IRSL traps 

Since the IRSL and post-IR IRSL signals at elevated temperatures appear to be originate from 

different groups of traps, it is thus necessary to measure the trap parameters related to the IRSL and 

post-IR IRSL traps. In this study, pulse annealing with different linear heating rates similar to that 

described by Li et al. (2007) was used to investigate the thermal stability and kinetic parameters of 

traps related to the IRSL and post-IR IRSL. A single aliquot of KF from sample Sm1 was heated to 
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500°C to remove all IRSL trapped charges and then measured using the same pulse annealing 

procedure outlined in Table 1 but with different heating rates (β=3, 2, 1 and 0.5 °C/s) in step 3.  

Fig. 3a shows the pulse annealing curves for the IRSL at 50°C. As expected, the lower 

heating rate resulted in an earlier reduction in IRSL at lower temperature due to a longer effective 

heating period for lower heating rate. Similar trends were observed for the post-IR IRSL at elevated 

temperatures (100, 150 and 200°C). Fig. 3b shows the luminescence reduction rate (%/°C) as a 

function of temperature for the IRSL at 50°C obtained using the data sets in Fig. 3a. The 

luminescence reduction rate was calculated as the difference between the signals measured at T and 

that at (T-20°C). Because the reduction of luminescence between T and (T-20°C) is an average effect 

of heating from (T-20°C) to T, the average temperature for each heating from to (T-20°C) to T would 

be (T-10)°C. It is shown that the reduction of the IRSL and post-IR IRSL signals increase with 

annealing temperature and then reach a peak before the reduction rate decrease again (Fig. 3b). There 

is an apparent shift of peak positions toward to higher temperatures for post-IR IRSL at elevated 

temperatures, indicating a higher thermal stability for post-IRSL at elevated temperatures. Similar 

trends were observed for the post-IR IRSL at elevated temperatures (100, 150 and 200°C). 

The reduction rate peak positions (Tm) were obtained by fitting the data sets in Fig. 3b using a 

Gaussian function and they were then used to calculate the trap parameters (activation energy E and 

frequency factor s) using the same procedure described by Li et al. (1997). The Arrhenius plots, 

ln(Tm
2/β) plotted against 1/kT (β is the heating rate and k is the Boltzmann constant), for all IRSL and 

post-IR IRSL at elevated temperatures were shown in Fig. 4. The calculated E and s values are 

summarized in Table 2. For the initial (0-1 s) IRSL measured at 50 °C, an energy depth of E=1.8±0.1 

eV and corresponding frequency factor of s=2.7x1013 s-1 were obtained, which predicts a TL peak 

temperature of ~370°C. These values are consistent with previous results using different KF samples, 

e.g. a value of 1.72 eV was reported by Li et al (1997). Murray et al. (2009) also measured E and s 

values for the IRSL signal using isothermal study and they determined a TL peak temperature of 
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430±30°C assuming first-order kinetics, which predicts a more stable trap source than our study. This 

discrepancy is probably due to the imperfect assumption of first-order kinetics and using different 

methods for estimating kinetic parameters. However, the predicted TL peak position based on the 

values in this study is consistent with experimental pulse annealing results (the peak of the percentage 

reduction curve), i.e. both peaks are at temperature around 370°C (Fig. 3b).  

It is interesting to note that substantially larger values of E were obtained for all post-IR IRSL 

signals, i.e. the energy depth E was found to be 2.2±0.2, 2.5±0.2 and 2.4±0.2 eV for the post-IR IRSL 

signal measured at 100, 150 and 200 °C, respectively. Meanwhile, much larger s values in the 

magnitude of ~1016-1017 s-1 were also obtained for these post-IR IRSL signals at elevated 

temperatures.  

The kinetic parameters were used to predict the corresponding lifetimes and first-order TL 

peak positions (Aitken, 1985) for each signal and the results are summarized in Table 2. It is noted 

that the uncertainties of the kinetic parameters (E and s) result in a large uncertainty on the calculated 

peak temperatures so that a large range of TL peak temperature could be resulted. For example, a 

change of 0.2 eV in the value of E for the 150 °C post-IR IRSL trap could result in a ~50 °C change in 

the corresponding TL peak temperature. As a result, the calculated TL peak temperatures for different 

IRSL signals could overlap with each other. However, the reduction rate plot (Fig. 3b), which could 

be treated as an equivalent (or analogue) of TL peaks for each IRSL signal, were obtained 

experimentally and shows a significant difference among the peak positions of different IR 

stimulation temperatures and different heating rates (Fig. 3b). This discrepancy cannot be explained 

by experimental uncertainties. It is thus concluded that at least two groups of traps (shallow and deep) 

were identified to be associated with the IRSL and post-IR IRSL signals for our sample. One is the 

shallow trap corresponding to the initial IRSL signal measured at 50°C, which is predicted to be 

associated with a TL peak at ~370°C for a heating rate of 5°C/s. No distinctive difference was 

observed between the trap parameters for the post-IR IRSL signals at 100, 150 and 200°C; these could 
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be associated with a similar TL peak centred at ~400°C at 5 °C/s. The slight shift of the peak position 

from ~392°C for the 100°C post-IR IRSL to ~415°C for the 200°C post-IR IRSL signal is reasonable 

because there might be more residual signal originating from the shallow traps for the 100°C post-IR 

IRSL than the 200°C post-IR IRSL All the traps are geologically stable according to the lifetimes 

(~1010 and ~1017 years, respectively) predicted from their kinetic parameters for the first order kinetics 

(Table 2). 

 

3.4 Effects of IR bleaching on TL signal for field-saturated sample 

3.4.1 Effects of IR bleaching on TL signal from natural and bleached sample 

The field-saturated sample Sm7 was used to investigate the relationship between anomalous 

fading, TL and IR bleaching. Here the reduction of TL as a result of IR bleaching was used as an aid 

to study the potential sources of IRSL. Fig. 5a shows the natural TL signals (N) after a 60 s preheat at 

250°C (blue curve), the remaining TL signal after preheating and IR bleaching at 50°C for 1000 s 

(N+IR) (red curve) and their difference (N-(N+IR)) (green curve). A single broad TL peak at ~365 °C 

was observed for the natural TL (N). The 1000 s IR bleaching resulted in a slight reduction in the 

peak intensity at higher temperature range (350-500°C) and increase in the lower temperature side 

(150-350°C) (Fig. 5a). This was expected as a result of photo-transfer of charges from deep IR-

sensitive traps into shallow IR-insensitive traps. The main TL peak position shifted slightly from 

~365°C for natural TL to ~355°C after IR bleaching. The difference between the two TL curves (N-

(N+IR)), which represents the IR-bleachable TL signal, was also shown (green curve). A peak centred 

at ~400°C was obtained, indicating the main source of IR-bleachable TL signal in this field-saturated 

natural sample. Besides the main 400°C TL peak, a small shoulder at ~350°C, probably associated 

with another TL peak, could also be identified as IR-bleachable. A negative TL peak at ~270°C 

indicates the reservoir traps accepting the photo-transferred charges.   
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    After measuring the natural TL, three aliquots were given a laboratory beta dose (β) of 470 

Gy and then preheated at 250°C for 60 s. The TL signals with and without 1000 s IR bleaching were 

then measured. Fig. 5b shows the laboratory regenerative TL signals obtained without IR bleaching 

(β) (blue curve), after IR bleaching (β+IR) (red curve) and their difference (β-(β+IR)) (green curve). 

A similar TL peak at ~365°C was obtained for both the regenerative TL signal with and without IR 

bleaching. The reduction of the TL signal as a result of IR bleaching was shown as their difference (β-

(β+IR)) (green curve in Fig. 5b). Two positive peaks centred at ~400 and 350°C could be identified as 

IR bleachable. A negative peak at ~270°C was also identified as photo-transferred signal. The IR-

bleachable TL signals for both the natural and regenerative doses were compared in Fig. 5c. It is 

interesting to note that the relative magnitudes of the 400 and 350°C peaks in laboratory regenerative 

samples are significantly different from that obtained from the natural sample (Fig. 5c). For beta-

regenerated TL signal (β-(β+IR)), there is a much higher proportion of IR-bleachable signals 

originated from the 350°C peak than that from the natural sample (Fig. 5c). Only a small proportion of 

IR-bleachable signals was identified from the 350°C peak for natural TL signal (N-(N+IR)). This 

result indicates that there are different proportions of IR-bleachable TL signals from the 350 and 

400°C TL peaks for natural samples and laboratory-irradiated samples.  

 

3.4.2 Effects of IR bleaching on TL signal from N+ β sample 

It has been shown that the natural signal has a different anomalous fading rate from the 

laboratory irradiated samples (Li and Li, 2008; Kars et al., 2008). In an extreme case, for a field-

saturated sample, the signals generated by laboratory beta irradiation above the natural dose are 

dominated by the fading (geologically unstable) signals, while the natural signal are dominated by the 

non-fading (stable) signal (Li and Li, 2008). To better understand the anomalous fading in feldspar, 

the effect of IR bleaching on TL signal was investigated using the naturally saturated (or field-

saturated) sample Sm7. Three natural aliquots were first given a beta dose of 470 Gy above their 
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natural dose (620 ± 21 Gy, Li and Li, 2008) as (N+β). The aliquots were then preheated at 250⁰C for 

60 s before their TL curves were measured. The TL curve of N+β (red curve) was compared with 

natural TL curve (N) (blue curve) in Fig. 6a. The difference between them (green curve) thus 

represents the β-generated signal above the natural TL. It is shown that, different from the TL curves 

of N and N+β, two peaks were identified in the β-generated signal. There is a distinctive peak 

(shoulder) at ~310⁰C. One possible explanation for this is that the fading signal is associated with the 

low temperature peak. Another  test for this is to compare the TL curve obtained immediately after 

irradiation and that measured after storage (Figure 7). It is shown that the lost TL signal after storage 

for ~2 days is dominated by a single peak at ~340⁰C. Because the complexity of mineralogy and 

luminescence emissions involved, there is a lack of firm evidences for the direct link between IRSL 

and TL signals, our results indicate that the shallow traps of ~350 ⁰C TL peak is relatively easier to 

fade anomalously than the deep traps of the ~400 ⁰C TL peak.   

More relative information on the anomalous fading characteristics of TL and IRSL signals 

could be revealed by studying the effect of IR bleaching on the TL signal of N+β samples. Three 

aliquots from Sm7 were treated similarly as above, i.e. they were given a dose β above the natural N. 

After preheat, they were bleached for 1000 s by IR at 50 °C before TL measurements (N+β+IR). The 

TL curve from N+β+IR (red curve) was compared with that from N+β (blue curve) in Fig. 6b. Two 

distinctive peaks, at ~330 and ~380 ⁰C, were identified in the difference between these two curves 

(green curve in Fig. 6b), which represents the IR-bleachable signals in the TL from the N+β. In Fig. 

6c, the IR-bleachable TL signal from N+β was compared with that from N (green curve in Fig. 5a). 

As shown, a significant difference is observed between the two curves (Fig. 6c). There is a 

significantly larger reduction in the TL signal from the low temperature range (300-350 ⁰C) for the 

N+β sample as a result of IR bleaching when compared to that from the natural sample (N). The 

difference between these two curves shows a distinctive peak at 300-350 ⁰C (green curve in Fig. 6c), 

which represents the IR-bleachable β-generated TL signal above the natural dose. A possible 
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explanation to this result is that the IR-bleachable signals from the natural sample (N) and the 

natural+beta (N+β) sample have different contributions from the shallow traps (300-350 ⁰C TL peak) 

and deep traps (~400⁰C TL peak). relationship between IRSL and TL deserves for further study. 

 

4 Discussions 

At least two groups of IRSL traps have been identified in the pulse annealing study of the 

IRSL and post-IR IRSL at elevated temperatures (section 3.2). The initial part of the IRSL measured 

at 50⁰C was shown to be dominated by a group of shallow traps with an apparent trap depth of ~1.8 

eV, while the post-IR IRSL at elevated temperatures (>100⁰C) was dominated by deep traps with an 

apparent depth of ~2.3 eV. It is noted that these values were obtained by assuming first-order kinetics 

and a single trap for the IRSL at each stimulation temperature. These values might not be correct 

when there are two or more traps envolved in the production of IRSL signal at different temperatures, 

which is the case indicated from our results in section 3.4. However, such values can still provide a 

prediction of the thermal behaviour of the IRSL signals. For example, the kinetic parameters obtained 

for the two groups of IRSL traps predict two TL peaks centred at ~360 ⁰C and ~400⁰C. This is 

consistent with the results obtained from the studies in IR bleaching of TL glow curves  (section 3.4), 

in which the IR bleaching resulted in reduction in two distinctive peaks at ~350 ⁰C and ~400 ⁰C in the 

TL signal (Fig. 5c).  

The TL and IRSL signals from feldspar have been shown to decrease with storage at room 

temperature due to the anomalous fading effect (Wintle, 1973), even though the relevant trapped 

electrons are thermally stable over geologically-long periods of time. The anomalous fading process 

has been shown to be a result of direct recombination of electron-hole pairs via tunnelling (Aitken, 

1985; Visocekas, 1985; Visocekas et al., 1994). Assuming a random distribution of traps, those close-

by electron-hole pairs will be preferentially recombined (Huntley, 2006). For the field-saturated 
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sample Sm7, all the stable (non-fading) traps distant from recombination centres have already been 

filled, while those traps in close proximity to recombination centres are approximately empty because 

the probability of tunnelling is higher than that of trap filling (Li and Li, 2008). Therefore, the natural 

IRSL signal (N) from Sm7 represents the recombination from spatially distant electron-hole pairs 

(non-fading), while the IRSL signal from the laboratory irradiated natural sample (N+β) was a result 

of the combination of both close pairs (fading) and distant pairs. It has been shown that the IRSL 

signal from N+β sample (Lβ) has a very high fading rate of ~11 %/decade (Li and Li, 2008). Our 

results show that the IR-bleachable TL signal from N+β sample has a significantly higher contribution 

from the ~350 ⁰C TL peak, when compared to the IR-bleachable TL signal from the natural sample 

(N) that is dominated by the ~400 ⁰C TL peak (Fig. 6c). It is therefore expected that the shallow traps 

of the TL peak at ~350 ⁰C has a higher fading rate than the deep traps of the TL peak at ~400⁰C. To 

test this, the reduction of TL signal as a result of storage at room temperature was conducted. It is 

shown that there was a significant reduction in the TL signal in the low temperature range (peaked at 

300-350⁰C) after storage for  ~2 days, while little reduction was observed in the TL signal at ~400⁰C 

(Fig. 7a). To quantify the fading rate of the TL signal in different temperature ranges, a fading test 

procedure similar to that described by Auclair et al (2003) was applied to measure the fading rate (g 

value) using sample Sm1 (Fig. 7b). The g value for the TL signal integral in the range of 301-350⁰C 

was estimated to be 3.3±0.3 %/decade. However, a much lower fading rate of 1.7±0.4 %/decade was 

obtained for the signal integral in the range of 381-420⁰C, although a higher relative uncertainty was 

obtained for this temperature range (Fig. 7b).   

 

Despite of the lack of a firm and direct link between IRSL and TL signals from K-feldspar, 

the results from this study give indications that the IRSL signals from KF may be associated with two 

TL peaks at ~350⁰C and ~400 ⁰C. Given by the different anomalous fading characteristics of the two 

TL peaks (Fig. 7), our results may partly explain the phenomenon that the post-IR IRSL at elevated 
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temperatures has a lower fading rate than the initial part of the IRSL signal at 50⁰C (Thomsen et al., 

2008), because the former was dominated by the deep traps associated with the ~400⁰C TL peak 

while the latter was dominated by the shallow traps associated with the ~350⁰C TL peak (Table 2). 

Therefore, the dependence of anomalous fading rate on IR stimulation time and temperature, as 

observed by previous studies (Thomsen et al., 2008), can be attributed to the fact that different groups 

of traps with different anomalous fading rates have contributed to the IRSL and their relative 

contribution changes as a function of IR stimulation time and temperature.  

 

5 Conclusions and implications for luminescence dating  

The results presented in our study show that at least two groups of traps (shallow and deep) 

are associated with the IRSL signals. The shallow IRSL traps are probably associated with the 

~350⁰C TL peak and the deep traps are probably associated with the ~400⁰C TL peak. The initial part 

of IRSL signal obtained at 50°C is mainly from the shallow traps while the post-IR IRSL obtained at 

elevated temperatures is mainly from the deep traps, suggesting a preferentially bleaching of the 

shallow traps compared to the deep traps under IR stimulation. Since the 350⁰C TL peak is associated 

with those easy-to-fade traps and the ~400⁰C TL peakis associated with hard-to-fade traps (Fig. 7a 

and b), it is expected that the post-IR IRSL could be used to select the hard-to-fade signals associated 

with the deep traps for dating, which has been suggested by Thomsen et al. (2008). It can be expected 

that choosing the most appropriate preheat and stimulation conditions may be able to select a non-

fading signal for dating purpose.  
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Table 1 Pulse annealing procedure for IRSL and post-IR IRSL at elevated temperatures. 1 

Step Treatment Observed 

1 Regenerative dose (38 Gy)   

2 Cut-heat to 300°C  

3 Cut-heat to T°C (T=160-500°C)  

4 IRSL measurement at 50°C for 100 s L50 

5 IRSL measurement at 100°C for 100 s L100 

6 IRSL measurement at 150°C for 100 s L150 

7 IRSL measurement at 200°C for 100 s L200 

8 Test dose (12 Gy)  

9 Cut-heat to 300°C  

10 IRSL measurement at 50°C for 100 s T50 

11 IRSL measurement at 200°C for 100 s T200 

12 Cut-heat to 500°C  

13 Return to step 1 and T=T+20°C  

 2 

3 
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Table 2 The kinetic parameters obtained from the data sets in Fig. 4, and the predicted lifetimes 1 

and first-order TL peak positions calculated using the values of E and s. The TL peak was 2 

calculated using a heating rate of 5 °C/s. 3 

Signal type E (eV) s (s-1) Lifetime at 20°C (years) TL peak (°C) 

IRSL at 50°C 1.8±0.1 2.7x1013 1.0x1010 373 

Post-IR IRSL at 100°C 2.2±0.2 2.2x1016 9.5 x1013 392 

Post-IR IRSL at 150°C 2.5±0.2 8.4x1017 3.6x1017 410 

Post-IR IRSL at 200°C 2.4±0.2 1.1x1017 5.3x1016 415 

4 
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Figure captions 1 

Figure 1: The normalized sensitivity-corrected IRSL signal (Li/Ti) as a function of the 2 

annealing temperature (T) for different IR stimulation time (0-1, 5-6, 10-11, 15-16, 50-51 and 3 

80-81 s).  The heating rate used is 3 °C/s. All curves were normalized to the initial value. All 4 

the IRSL signals (Li and Ti) are calculated from the integral of the counts in the time periods 5 

shown, with subtraction of an equivalent background obtained in the last 5 s of the IRSL 6 

curves. 7 

 8 

Figure 2: (a) The normalized IRSL and post-IR IRSL curves obtained for different stimulation 9 

temperature (temperatures are shown above each curve). All IRSL curves were normalized to 10 

the initial stimulation at t=0. (b) Pulse annealing results from the IRSL and post-IR IRSL at 11 

different temperatures obtained using the procedure in Table 1. The corrected IRSL signal was 12 

calculated using the ratio of the IRSL signals (L50, L100, L150 and L200) to the test dose IRSL 13 

signal (T50). The heating rate for each heating is 2°C/s. All curves were normalized to the initial 14 

value. All the IRSL and post-IR IRSL signals (Li and Ti) are calculated from the integral of the 15 

counts in the initial 1 s, with subtraction of an equivalent background obtained in the last 5 s of 16 

the IRSL curves. 17 

 18 

Figure 3: (a) Pulse annealing curves using different heating rates for the IRSL measured at 19 

50°C; All IRSL signals were normalized to the initial value. All the IRSL and post-IR IRSL 20 

signals (Li and Ti) are calculated from the integral of the counts in the initial 1 s, with 21 

subtraction of an equivalent background obtained in the last 5 s of the IRSL curves. (b) The 22 

luminescence reduction rate (%/°C) obtained using the data sets in (a). The luminescence 23 
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reduction rate was plotted as a function of the average temperature for each heating, i.e. (T-1 

10)°C. All curves had been smoothed using three-point running mean. 2 

 3 

 4 

Figure 4: The Arrhenius plots, ln(Tm
2/β) plotted against 1/kT, for IRSL at 50°C, post-IR IRSL at 5 

100°C, 150°C and 200°C. β is the heating rate used in pulse annealing tests. k is the Boltzmann 6 

constant. Tm is the reduction rate peak positions.  7 

 8 

Figure 5: (a) The natural TL signals (N) after a 60 s preheat at 250°C (blue curve), the 9 

remained TL signal after preheating and IR bleaching at 50°C for 1000 s (N+IR) (red curve) 10 

and their difference (N-(N+IR)) (green curve). (b) The TL signals from laboratory-irradiated 11 

sample (β) (blue curve), and IR-bleached laboratory-irradiated sample (β+IR) (red curve) and 12 

their difference (β -(β+IR)) (green curve). (c) Comparison of the IR-bleachable TL signals from 13 

natural sample (N-(N+IR)) (blue curve) and laboratory-irradiated sample (β -(β+IR)) (green 14 

curve). The signal of (β -(β+IR)) was multiplied by a factor of 3 for a better comparison.  All 15 

TL curves were measured using a heating rate of 5°C/s. Each curve was obtained from the 16 

average of three paralleled aliquots. The inter-aliquot variation of TL curves from different 17 

aliquots was normalized using the natural IRSL signal obtained by a short exposure to IR at a 18 

reduced intensity (10%) before any measurement. 19 

 20 

Figure 6: (a) The TL curve of N+β (red) sample compared with the natural TL curve (N) (blue 21 

curve), and their difference ((N+β)-N) (green). (b) The TL curve of IR-bleached N+β  sample 22 

(N+β+IR) (red curve) compared with the TL curve of N+β sample (blue), and their difference 23 



21 

 

((N+β)-(N+β+IR)) (green). (c) Comparison of the IR-bleachable TL signals from N+β sample 1 

(N+β -( N+β +IR)) (blue), natural sample (N-(N+IR)) (red), and their difference (green). All TL 2 

curves were measured using a heating rate of 5°C/s. Each curve was obtained from the average 3 

of three paralleled aliquots. The inter-aliquot variation of TL curves from different aliquots was 4 

normalized using the natural IRSL signal obtained by a short exposure to IR at a reduced 5 

intensity (10%) before any measurement. 6 

 7 

Figure 7: (a) The TL curves of laboratory irradiated sample. The red curve (prompt) was 8 

obtained immediately following irradiation. The blue curve (delayed) was obtained after a 9 

storage of ~2 days (blue). The green curve shows the difference between the prompt and 10 

delayed curves. For a better comparison, the difference between the prompt and delayed curves 11 

was multiplied by a factor of 10. All the curves were obtained using the same aliquot of Sm7. 12 

The aliquot was heated to 500°C before giving laboratory dose (46 Gy). The TL curves were 13 

measured using a heating rate of 5°C/s. (b) Anomalous fading test of the TL signals in the 14 

ranges of 301-350 °C and 381-420°C as a function of delayed period (t). The normalized TL 15 

signals were obtained using the delayed Li/Ti method as described by Auclair et al. (2003) with 16 

each IRSL measurement in the procedure replaced by 500°C TL measurement. The 17 

regeneration dose and test dose are 32 Gy and 8 Gy, respectively. A preheat at 250°C for 60 s 18 

was applied before TL measurement to empty shallow TL traps. The corrected TL signals 19 

(Li/Ti) were normalized to the first measurement (tc=430 s). The calculated g values are shown 20 

in the figure. The data sets were derived using four KF aliquots from sample Sm1.  21 

 22 

 23 

24 
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Figure 1 1 
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Figure 2 1 
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Figure 3 1 
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Figure 4 1 
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Figure 5 1 
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Figure 7  1 
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