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Abstract 

 Optically stimulated luminescence (OSL) dating has been applied to quartz grains 

extracted from a sedimentary layer containing stone tools from the bank of Salawusu 

River, Mu Us desert in central China. Severe age underestimation was observed by 

applying the single-aliquot regenerative dose (SAR) dating method when compared 

with the isochron infrared stimulated luminescence (iIRSL) dating results using 

potassium-rich feldspar grains of different grain sizes. Preheating plateau and dose 

recovery tests suggest that the SAR protocol is robust for this sample. Component 

resolving indicates that the OSL signals were dominated by the fast component. 

However, the fast component is thermally unstable as shown by pulse annealing 

measurements and single-grain study. This leads to OSL age underestimation. To 

overcome this problem, a method was proposed by combining equivalent dose (De) 

determination and pulse annealing experiments using single-grain measurements to 

select only those grains with the thermally stable signals. For those quartz grains with 

thermally stable OSL signals, the ages obtained are consistent with iIRSL results.   
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Introduction 

 In the last decade, the single-aliquot regenerative-dose (SAR) dating protocol 

(Murray and Wintle, 2000) has been successfully applied to quartz grains from a wide 

variety of Quaternary sediments (Murray and Olley, 2002; Vandenberghe et al., 2004). 

Since the fast component in quartz optically stimulated luminescence (OSL) signals is 

the most easily bleached by sunlight, an underlying assumption of the SAR protocol is 

that the signals measured are fast-component dominant (Wintle and Murray, 2006).

 Unsuccessful applications have been reported when samples are dominated by 

non-fast components (Choi et al., 2003; Li and Li, 2006a; Tsukamoto et al., 2007). 

These have been shown to be associated with the presence of slower decaying 

components (e.g. medium component and slow components) in the initial OSL signals. 

The presence of such components could be detected using the De (t) plot, De value 

against stimulation time. When the initial signals contain significant contributions 

from thermally unstable OSL components (e.g. M1 or S3) (Jain et al., 2003; Li and Li, 

2006a), the De (t) plot would show a decrease and an underestimation of De will be 

resulted. The fast component can be isolated either by mathematically fitting OSL 

signals (Singarayer and Bailey, 2004; Li and Li, 2006b) or instrumentally using 

infrared (IR) stimulation (Jain et al., 2003; Fan et al., 2009), although these methods 

are time-consuming. 

 Age underestimations using SAR protocol have also been reported in quartz 

samples for which OSL signals are dominant by the fast component (Buylaert et al., 

2007; Murray et al., 2007; Qin and Zhou, 2007). Recently studies on quartz OSL 

dating of a Danish Eemian (132-116 ka in northern Europe) sediments showed 

significant age underestimations (Murray and Funder, 2003). Similar trend of age 

underestimation was also found in quartz samples from Chinese Loess Plateau (Lu et 

al., 2007). Significant underestimations of quartz De were reported for samples in the 

same region (Buylaert et al., 2007; Qin and Zhou, 2007). Based on comparison of 

OSL and IRSL dating results and independent age control, Buylaert et al. (2007) 



concluded that SAR-OSL dating on quartz in the region should be restricted to samples 

younger than 40-50 ka. Samples above that age would yield underestimations of more 

than 30%. In a detailed investigation on the performance of SAR on quartz samples 

from Chinese Loess Plateau, Qin and Zhou (2007) reported underestimations of 30-50% 

on samples from palaeosols (S1) bottom and the top of loess layer (L2) with 

stratigraphical ages around 130ka. It is worth pointing out here that growth curves 

analysis in above studies showed no sign of saturation in the regenerative dose range 

adopted in De measurements. Kinetic studies on quartz samples from different regions 

suggest that the lifetime of the fast component of OSL signals should be stable over a 

few million years (Li and Chen, 2001; Murray and Wintle, 1999). 

 In this study, we report the observation of thermally unstable OSL signals of 

quartz grains, which leads to the age underestimations. 

 

2. Samples and Instruments 

2.1 Samples 

 Sample FJGW1 from Fanjiagouwan site at the south edge of the Mu Us Desert 

was used in this study (Figure 1). Metal pipes were used to extract the sediments. The 

surface sample at both ends of the pipe was scraped away in the laboratory for dose 

rate and water content measurements. The central part of the sample was treated with 

10% hydrochloric acid (HCl) and 10% hydrogen peroxide (H2O2) to remove 

carbonates and organic materials, respectively. Fractions of grains of different sizes 

were separated by sieving. Density separations using sodium polytungstate solutions 

were applied to isolate the K-feldspar (KF) and quartz grains.  

 For quartz, grain size range of 125-150μm were separated and etched with 40% 

hydrofluoric acid (HF) solution for at least 40 minutes prior to mounting on aluminum 

discs. The purpose of the HF etching was to remove any possible feldspar grains and to 

etch away the alpha irradiated outer layer (about 10μm) of the quartz grains. The 



absence of K-feldspar contamination was then checked with IR stimulation on the 

aliquots (None showed any significant IRSL signals compared with the background). 

For K-feldspar, grains of 125-150μm was used in K-feldspar SAR-IRSL 

measurements. A 40 minutes etching using 10% HF solution was used to remove the 

alpha-irradiated layer and adhesive clays.  

 

2.2 Instruments 

 The single-aliquot OSL measurements of quartz were performed using a 

Risø automated TL/OSL system (TL-DA-15) equipped with stimulation units 

containing blue light-emitting diodes (LEDs, 470 nm) and IR LEDs (880 nm). The total 

power delivered by the blue LEDs to the sample position was 45mW/cm2 

(Botter-Jensen et al., 2003).The OSL signals were measured through three 

2.5-mm-thick U-340 filters and detected using a bialkali EMI 9635Q photomultiplier 

(PM) tube. Beta irradiation was performed using a 90Sr/90Y beta source delivering 0.08 

Gy/s to grains loaded on 9.7-mm-diameter aluminum discs. The K-feldspar grains 

were measured using another Risø TL/OSL system (TL-DA-12), which a separated 

calibration of the dose rate for each grains size has been done to fulfill the 

requirements of iIRSL method (Li et al., 2008b). The IRSL signals were detected 

through a filter pack of Schott BG-39 and Corning 7-59.  

 The single-grain OSL measurements were carried out using a Risø automated 

TL/OSL system (TL-DA-20) with a single-grain attachment. The green laser used for 

single-grain measurements is a 10 mW Nd:YVO4 solid state diode-pumped laser 

emitting at 532 nm focused to a spot with diameter about 20μm (Bøtter-Jensen et al., 

2003). The maximum energy fluency rate at the sample is around 50W/cm2 (Duller et 

al., 1999). The IR laser used for single-grain measurements is a 150 mW IR laser (830 

nm), with an additional filter (3mm-thick RG 780) mounted at the end of the rail in 

the single-grain attachment to eliminate the small resonance of IR laser at 415 nm. All 



of the heating were performed at a rate of 5C/s unless specified.  

 

3. Single-aliquot results  

3.1. Age determination using quartz 

 Before applying the SAR protocol, a preheat plateau test was performed to 

check whether there was any dependence of De on the preheat temperature. As shown 

in Figure 2a and 2b, the measured De values showed no significant changes in the 

temperature range. Thus, a preheat of 260 ºC for 10s and a cutheat to 220 ºC were used. 

A dose recovery test was also conducted. The aliquots were first bleached at 125 ºC, 

which is followed by a laboratory irradiation of 90 Gy. Such a dose was then measured 

as an “unknown” dose using the same SAR procedure. It was found that the SAR 

protocol can recover a laboratory given dose (recovery ratio: 1.04±0.03).  

 For De determination, totally 30 aliquots of quartz grains were measured. The 

results showed good characteristics in SAR protocol, in terms of recycling ratio, 

recuperation and signal intensity. The recycling ratio (R) yielded values within 0.9-1.1 

(R=1.06 in average) and all recuperated signal (i.e. D=0 Gy) yielded values <5% of the 

natural signals. All these results indicate that the SAR protocol is suitable for the quartz 

grains of the sample. An equivalent dose of 71.2±2.9 Gy (n=30) was obtained by 

quartz SAR-OSL, and the derived age is 27.4±1.5 ka (Table 1). The calculated 

over-dispersion (OD) value is 21±3 (%). The large over-dispersion value indicates a 

non-single population of De values (Figure 3). 

 

3.2. Age determination using K-feldspar 

 The age of K-feldspar using IRSL signals from our sample was also measured 

for comparison. The equivalent dose was measured using the SAR protocol described 



by Blair et al. (2005), in which a preheat at 280 ºC for 10 s was used following both 

regenerative and test doses (Li et al., 2007). A central De value of 112 ± 2 Gy was 

obtained. This gives an apparent age of 35.0±2.3 ka using an environmental dose rate 

of 3.2 Gy/ka (Table 1). It is interesting to note that such an apparent age is already 

older than the quartz OSL age of 27.4±1.5 ka (Table 1). To test if the IRSL age was 

underestimated as a result of anomalous fading, fading rate (g value) was measured 

using the method proposed by Auclair et al. (2003). A fading rate of 3.5±0.5 %/decade 

was obtained, suggesting that the IRSL age from KF should be younger than the true 

age. It is concluded that the quartz OSL age (27.4±1.5 ka) has been severely 

underestimated.   

 To confirm this phenomenon further, iIRSL dating using different grain sizes 

(90-125, 125-150, 150-180, 180-212 and 212-250 µm) of K-feldspar, as proposed by 

Li et al. (2008b), was conducted. It has been shown that such method can avoid the 

problem of anomalous fading and changes in environmental dose rate (Li et al., 2008a; 

Li et al., 2008b), and it was successfully applied to sediments from the similar area. The 

De values from of all grain sizes (90-125μm, 125-150μm, 150-180μm, 180-212μm and 

212-250μm) were plotted against the internal dose rate calculated using concentrations 

of 13±1% and 400 µg/g for K and Rb, respectively (Figure 4). An IRSL Isochron age 

of 54 ±7 ka was derived. The isochron dating result suggests that the quartz OSL age 

has been underestimated by about 49%. According to field observation and 

stratigraphy evidence, it is unlikely that the sample was incompletely bleached before 

deposition, or has been disturbed after deposition.  

 

3.2. Luminescence dating characteristic  

3.2.1 Dose response curves 

 Four representative growth curves in De measurements are shown in Figure 5. 

Although the curves showed a large aliquot-to-aliquot variation, there was no onset of 



saturation. The sensitivity-corrected natural OSL (LN/TN) can be interpolated on the 

growth curves. The normalized OSL signals (Li/Ti) were fitted using equation: Li/Ti= 

A[1-exp(-D/D0)] , where D0 is the dose level that is characteristic of the dose response 

curve and A is a constant related with normalization. The obtained values of 2D0 

ranged from 127 to 363 Gy, which are larger than the obtained De values around 70Gy. 

Previous study on loess OSL dating using silt-sized quartz has also shown that the 

saturation dose could be larger than 800 Gy (Watanuki et al., 2003). Therefore, we 

conclude that underestimation of De values is not due to dose saturation.  

 

3.2.2 De (t) plot 

 The underestimation of De could be a result of the existence of thermally 

unstable traps if they contribute a significant amount to the measured OSL. De (t) plot 

is a useful analytical tool to identify if there are any potential effects of such 

components. Figure 6 shows a typical De (t) plot from one aliquot of our sample. 

Every point was calculated using an integral of 0.2s of the OSL signal at each different 

stimulation time. Previous researches reported falling patterns in De (t) plot, which 

can be ascribed to the insatiability of S2 (Singarayer and Bailey, 2003) or medium (Li 

and Li, 2006a) components in their OSL signals. The plot of sample FJGW1 shows 

no trends of rising or falling in De values against stimulation time, indicating there is 

no apparent discrepancy of absorbed dose in different OSL components at the initial 

OSL signals. 

 

3.2.3 OSL signal composition 

 The quartz OSL signals were fitted using several exponentially decaying 

components (Bailey et al., 1997). At least three components are necessary to fit the 

CW-OSL curves. The average value of detrapping probability of the fastest component 



is 1.5±0.1 for all OSL curves measured, including both natural signals and 

regenerative ones. Note that the stimulation source used here is the blue LEDs (470nm) 

set at 50% of its maximum power. A photoionization cross-section α of 2.51±0.22 

x10-17 cm2 was obtained. This is a representative value for the sample and is consistent 

with that obtained by previous studies (Jain et al., 2003; Singarayer and Bailey, 2003; 

Li and Li, 2006b).  

 Curve fitting was used to investigate relative contribution of each component 

in the OSL signals. As shown in Figure 7, the fast component contributes to over 90% 

of the OSL signals measured in the first 0.6 second from the aliquot, which was used 

in De measurement. Therefore, the OSL signal from this sample is fast-component 

dominant.  

 

3.2.4 Thermal stability  

 To investigate the thermal stability of measured OSL signals, pulse-annealing 

experiment was carried out using 4 bleached quartz aliquots from the sample. The 

detailed pulse annealing experiment procedures are summarized in Table 2. Each 

aliquot was given a laboratory dose of 32 Gy. The aliquot was then subject to a cut heat 

to T ºC. The aliquot was stimulated with 100 s blue stimulation at 125 ºC to measure 

the CW-OSL signal. At the end of each run, the aliquot was bleached with blue 

stimulation at 280 ºC to remove all potential signals. This measurement cycle was 

repeated with the cutheat temperature T being increased from 200 to 400 ºC, in 

increments of 20 ºC. Correction for sensitivity changes during repeated irradiation, 

heating and illumination in the pulse-annealing experiments was made using OSL 

response to a test dose of 8 Gy. The luminescence remaining after heating to each 

temperature was normalized to the initial value. For comparison, pulse annealing 

results from a heated quartz sample is also shown as aliquot 0# (Figure 8), which OSL 

signal is typically from stable fast component(Fan et al., 2009). 



 The normalized OSL signals of aliquots from FJGW1 sample (1#, 3#, 5# and 

7#) showed a early decrease at low temperature range (below 260 ºC), which is in 

contrast with the results of 0# sample. Curve patterns of FJGW1 sample also showed 

a large aliquot-to-aliquot variation between temperatures ranging from 200 ºC to 300 

ºC. Significant reductions in the OSL signals were observed for all aliquots after 

temperature was raised above 300 ºC. 

 

4. Single-grain results 

4.1 Single-grain De measurements 

 Research on single-grain quartz have shown that the luminescence properties, 

e.g., signal brightness, sensitivity changes, relative proportions of different 

components and dose responses, can vary greatly from grain to grain (Duller et al., 

2000; Bulur et al., 2002). De values obtained from single grains could provide higher 

resolution of variation of luminescence characteristics than the single aliquots of 

multiple grains. The SAR protocol (Murray and Wintle, 2000) was applied to single 

grains to obtain De values of each grain. Considering the high power of green laser 

used in single-grain measurement, 1 second stimulation at 125 ºC was adopted. The 

OSL signal used for dating was the integral of first 0.06 second of the OSL decay 

curve, with subtracting a background of the last 0.2 second. IR diodes stimulation was 

performed before measuring the recycling point to check the existence of feldspar 

contamination using the IR depletion ratio (Duller, 2003). A direct IR laser 

stimulation was also used after the De measurements for checking any feldspar 

contaminations. 

 Totally 2500 grains (25 discs, one disc loaded with 10x10 arrays of grains) 

were measured. 2108 grains were rejected during De analysis by at least one of the 

following rejecting criteria:  

1) Initial TN signal is lower than 3 times of the background counts measured by PM 



tube (around 2 counts/0.02s);  

2) Not giving a dose response curve;  

3) Recycling ratio (IR depletion ratio) falls out of 1±10%;  

4) Recuperation ratio is larger than 10%.  

5) No intersection of LN/TN on the growth curve.  

6) PM counts during IR laser stimulation are higher than 3 times of the background 

counts measured without IR stimulation;  

 After screening with the criteria, De values of 392 grains were accepted for 

further analysis (Figure 9). A De value of 87.7±3.0 Gy was calculated using the 

Central Age Model (Galbraith et al., 1999). Although the age of 34 ka derived from 

the equivalent dose is larger than the average age of 27 ka from single aliquots, it is 

still 37% lower than the K-feldspar iIRSL age. Despite the underestimation, De 

distribution is much wider than the single-aliquot results. The value of 

over-dispersion is 45.3%, indicating the possibility of more than one populations 

existing in the measured grains. 

 

4.2 Single-grain pulse annealing measurements 

 Pulse annealing analysis was performed on all grains after De measurements. 

Experimental details were similar as mentioned in section 3.2.4, except green laser 

was used as the stimulation light source for single-grain measurements. Pulse 

annealing curves from 7 representative grains are shown in Figure 10, with their De 

values indicated on the right. The pulse annealing results of individual grains showed 

grain-to-grain variations, significantly larger than those observed from single-aliquots 

(Figure 8). Some grains, e.g. grain 2 and 7 in Figure 10, show typical pulse annealing 

curves of quartz, i.e. their OSL signals are thermally stable up to 300 ºC, while some 

grains (e.g. grain 4 and 6 in Figure 10) show an early decrease in their OSL signals in 

temperature as low as 200 ºC.  



 In order to characterize the thermal stability of the OSL signals from different 

grains further, we calculated a thermal remnant ratio (RT), defined as the ratio of the 

remnant OSL signals measured after heated to 280 ºC to those measured after heated 

to 240 ºC. The 392 grains accepted were divided into Group A (107 grains) and 

Group B (285 grains), respectively. Group A grains have RT ratios larger than or 

equal to 0.9; Group B grains have RT ratios less than 0.9. For a thermally stable OSL 

signal, it is expected that heating to 280 ºC would not affect the signal. Hence, the RT 

ratio should be close to unity, as those grains in Group A. Grains with relatively 

thermally unstable signals are in Group B. 

 To check whether the unstable OSL signal observed in group B is a result of 

presence of thermally unstable component (e.g. ultra-fast, medium or slow 

components) (Singarayer and Bailey, 2003; Li and Li, 2006a; Jain et al., 2008), the 

single-grain OSL decay curves in both groups were examined. Figure 11 shows the 

OSL decay curves of the same grains in Figure 10. There is no distinguishable 

difference among these grains in the initial part of the decay curves. The OSL signals 

rapidly decreased to the 5% background level within the first 0.1s of the 1s 

stimulation (90% power). The OSL curves can be fitted with two exponential 

decaying components. The calculated detrapping rate for the fast component was 46 

s−1, which is similar as reported for a typical quartz sample in previous study (Bulur 

et al., 2002). This result confirms that the large discrepancy of the thermal stabilities 

between grains in group A and B is not a result of presence of the thermally unstable 

components of ultra-fast component or medium component. 

 

4.3 Relationship between De and thermal stability  

 In addition to the differences in thermal stability, grains in group B give 

smaller De values than those in Group A. This indicates that the underestimation of De 

relates to the thermal stability of OSL signals. De results of the 392 grains were 



plotted in Figure 12. The grains in Group A are shown as filled circles and grains in 

Group B as open triangles. Central De and the corresponding over-dispersion values 

from both groups are also summarized in Table 3. 

 For group A, the central De value of 147.1±2.6 Gy with over-dispersion value 

of 13.1% was obtained. The small over-dispersion value suggested that the De values 

measured was dominated by one population. The derived central age is 56.6±2.4 ka, 

which is consistent with the results obtained by iIRSL dating (54 ±7 ka). However, for 

group B, the calculated central De is 69.8±2.4 Gy, which give an age of 26.8±1.4 ka. 

There is still a large scatter of the De distribution as indicated by the over-dispersion 

value (37.7%).  

 In calculating the value of RT, the temperatures of 280 and 240 ºC were 

chosen arbitrarily. It is necessary to test whether the De results are influenced by the 

temperatures chosen for calculation. Here we re-calculate the value of RT as the ratio 

of the remnant OSL signals measured after heating to 280 ºC and those after heating 

to 200 ºC, and re-group the grains using the new criterion, as shown in Table 3. 

Although there is a slightly difference in the number of grains accepted in each group 

(Group A and A*), the derived central De and over-dispersion values are 

indistinguishable. We conclude that the De values obtained for both groups does not 

change when different criterion are used. The RT ratio (OSL280ºC/OSL240ºC) can be 

adopted to distinguish the grains with stable OSL signal from the ones with unstable 

signals.  

 

5. Discussion  

  The studying sample gives an apparent IRSL age of 35.0±2.3 ka for KF and 

an age of 27.4±1.5 ka for quartz using SAR protocol. It is expected that the quartz 

OSL age should be older than the apparent KF IRSL age, because of anomalous 

fading effect in K-feldspar. Such discrepancy indicated our quartz OSL age was 



severely underestimated. This was further supported by our iIRSL dating result from 

different grain sizes K-feldspar.  

 The underestimation of quartz OSL age is not due to feldspar contamination, 

because the quartz sample has been checked using the IR depletion ratio (Duller, 

2003) in the SAR protocol. The age underestimation is not a result of other thermally 

unstable signals, such as ultra-fast, medium and slow components. The ultra-fast 

component can be removed effectively by heating to 220ºC (Jain et al., 2003). A 

preheat at 260°C has been applied in our De measurements. The medium component 

(Li and Li, 2006a) and the slow component (Jain et al., 2003) could also result in De 

underestimation, which could be manifested by the De (t) plot. De (t) plot for our 

sample (Figure 6) showed no dependence of De values on the stimulation time. This is 

further supported by curve-fitting analysis on the CW-OSL curves (Figure 7). It is 

shown that the total contribution from medium or other slower components in the first 

0.2s is estimated to be less than 5% of the total signals. It is also noted that a 

photoionization cross-section α of 2.51±0.22 x10-17 cm2 was obtained from the 

single-aliquot CW-OSL curves from quartz sample, which is consistent with the value 

of the fast component obtained in previous studies (Jain et al., 2003; Singarayer and 

Bailey, 2003; Li and Li, 2006b). Therefore, the only way yet to discriminate the 

unstable component from the stable ones for our sample is their difference in thermal 

property, not by their decay rates. Sensitivity change during the measurement of the 

OSL signals also can result in De underestimation. This phenomenon can be tested by 

the recycling ratio in the SAR protocol. Quartz sample used in this study has a 

recycling ratio of 1.06, which indicates that the sensitivity correction is robust in SAR 

De measurements. Therefore, we conclude that the De underestimation, when using 

SAR protocol of fast component in quartz OSL, is a result of lack of thermal stability 

of OSL signals in the fast component from some of quartz grains. Such unstable 

signal cannot eliminated completely by applying high preheat temperatures (Figure 

2a), although a noticeable increase in De with higher preheat temperature could be 



achieved. Our single-grain measurements show that there is a large variety in the 

thermal stability from grain to grain (Figure 10). The pulse annealing results indicated 

that the OSL from some quartz grains is unstable at heating temperature as low as 

200°C. 

 The OSL signals from a single aliquot, which contains a large number of 

grains (500-1000), would inevitably have contributions from the grains with unstable 

OSL signals. The De measured is thus underestimated. By conducting single-grain 

pulse annealing measurements, those grains with stable and unstable OSL signal 

could be distinguished. By selecting those grains with stable OSL signals, an age of 

56.6±2.4 ka was obtained. This is in excellent agreement with the isochron dating 

result (54 ±7 ka) obtained using KF. 

  In a comparison of quartz OSL ages and KF IRSL ages (Buylaert et al., 

2007), underestimations in quartz grains were found in samples with expected 

ages >70 ka. A similar underestimation was also reported by Lai (2010). By 

comparing OSL ages with independent ages from palaeo-magnetic data, Lai (2010) 

pointed out that the reliable ages obtained in quartz from the Luochuan section is 

younger than 70 ka (i.e. 230 Gy). Our sample was taken from the south edge of the 

Mu Us Desert, which is adjacent to the north part of the Chinese Loess Plateau. It is 

believed that the materials in the Chinese Loess Plateau is partly originated from the 

same as those in Mu Us Desert (Sun, 2002). It is therefore expected that a similar 

luminescence behavior would be observed in both areas. Our results suggest that the 

thermal instability in the quartz OSL signal could explain the underestimation 

observed in the Chinese Loess Plateau and the adjacent areas.  

6. Conclusions 

 Severe age underestimation accompanied with large scatter in De values was 

observed when the SAR dating protocol was applied to the quartz grains from a 

sample from Mu Us Desert, northern China. This is attributed to the unstable fast 



component from a part of quartz grains, indicated by pulse annealing results. The 

grains with stable OSL signals can be separated in single-grain pulse annealing 

measurements. The age calculated from these grains with stable OSL signals is in 

agreement with the feldspar iIRSL dating results. 
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Figure captions 

Figure 1. Location of sample FJGW1. Fanjiagouwan is an archaeological site on the 

bank of Salawusu River, where stone tools were found. 

 

Figure 2. (a) Preheat tests on sample FJGW1 of temperature ranging from 220 ºC to 280 

ºC. The equivalent dose at each temperature was measured with 4 aliquots. The average 

values of the 4 aliquots are presented with standard error. (The overall average value is 

also indicated as the dashed line). (b) The average recycling ratio (filled circles) and 

recuperation ratio (filled squares) obtained at each preheat temperature. 

 

Figure 3. Age distribution (30 aliquots) obtained with SAR-OSL for quartz grains. 

Dashed lines show the ages obtained using IRSL and iIRSL dating of K-feldspar of the 

same sample, respectively (data listed in Table 1).  

 

Figure 4. The Isochron plots showing the De values of K-feldspar grains of different size 

plotted against the internal beta dose rate calculated by assuming that the concentrations 

of K and Rb are 13% and 400 µg/g, respectively. Filled symbols are measured data. The 

full line is the best fitted line of the data points. The dashed line is calculated using the 

method described by Li et al. (2008b) and the age calculated from the difference 

between the slopes from the two lines. 

 

Figure 5. Growth curves of 4 representative aliquots in quartz single-aliquot 

measurements.  

 

Figure 6. Typical De (t) plot of a quartz aliquot of sample FJGW1.  

 

Figure 7. Relative contributions from different components in the CW-OSL decay curve 

from one a aliquot, plotted against the stimulation time.  



 

 

Figure 8. Pulse-annealing curves for four aliquots (1#, 3#, 5#, 7#) from sample FJGW1, 

plotted as the remnant luminescence versus annealing temperature. (Integral of the first 

0.2 s OSL signals was used). Aliquot 0# is a heated quartz sample with stable OSL 

signals for comparison. 

 

Figure 9. Radialplot of equivalent dose values for all 392 grains of FJGW1 after 

sceening with the criteria. De values falling in the 2σ region of the central De are 

identified as filled circles. 

 

Figure 10. Pulse-annealing curves for 7 representative grains in sample FJGW1, plotted 

as the remnant luminescence versus annealing temperature. Integral of the first 0.02 s 

OSL signals was used. 

 

Figure 11. OSL decay curves for grains in Figure 10 measured during the De 

determination. The data was normalized to the largest OSL signal point of each grain. 

 

Figure 12. Radialplot of equivalent dose values for all 392 grains of FJGW1. Grains in 

Group A and Group B are labeled as filled circles and open triangles, respectively.  



Table 1. Summary of single-aliquot dating results using quartz and KF extracted from 

FJGW1 using SAR technique. 

Dating 

material 

alpha 

counting 

ratea 

 K 

content 

Water 

content

Internal 

dose 

rateb 

Cosmic 

ray  

Equivalent 

dose 

Dose 

rate 
OSL age 

counts/ks (%) (%) (Gy/ka) (Gy/ka) (Gy) (Gy/ka) (ka) 

Quartz 6.2±0.2 1.6±0.1 10±5 - 0.2 71.2±2.9 2.6±0.1 27.4±1.5 

K-feldspar 6.2±0.2 1.6±0.1 10±5 0.6 ±0.1 0.2 112 ± 2c 3.2±0.2 35.0±2.3 

aThe alpha counting rate is measured using 42-mm-diameter ZnS screens. The counts 

were converted into alpha, beta and gamma contributions with the conversion factors 

given by Adamiec and Aitken (1998). 

bThe internal dose rate calculated using concentrations of 13±1% and 400 ug/g for K 

and Rb, respectively 

cThe apparent De of KF (without any correction for anomalous fading) 

 

 

 



Table 2. The pulse annealing measurement procedures 

Step Treatment Observed 

1 

2 

3 

4 

5 

6 

7 

8 

Give regenerative dose, D0
a 

Heat to T °Cb  

OSL measurement at 125°C for 100 s 

Give test dose, Dt
c 

Cut-heat to 200 °C 

OSL measurement at 125°C for 100 s 

Blue LED bleach at 280 °C for 40 s 

Return to step 1 

 

 

Li 

 

 

Ti 

aGiven dose D0 is 32 Gy.  

bT °C is from 200 to 400°C in steps of 20°C. 

cTest dose for each cycle: Dt = 8 Gy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3. Number of grains in Group A (stable) and Group B (unstable) identified using 

the RT ratio. Central De, over-dispersion values and the corresponding ages from both 

groups are also presented.  

Grains Number De (Gy) 
Over-dispersion 

(%) 
Age (ka) 

Total 392 87.7±3.0 45.3 33.7  

Group B 285 (73%) 69.8±2.4 37.7 26.8 

Group A 107 (27%) 147.1±2.6 13.1 56.6 

 Group A* 88 (22%)  143.8±5.2  15.6 55.3 

*Showing the results when a different RT ratio was used (OSL280ºC/OSL200ºC). 
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