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Abstract: 

In optical dating of potassium-feldspar, the luminescence signals can be 

stimulated by both infrared (IR) light and blue light (BL). To develop reliable dating 

methods using different stimulation light sources for feldspars, it is important to 

understand the sources of the traps associated with the infrared stimulated 

luminescence (IRSL) and blue light stimulated luminescence (BLSL) and their 

relationship. In this study, we explored the luminescence characteristics of IRSL and 

BLSL at different stimulation temperatures (from 60 °C to 200 °C) and their 

relationship based on five sets of experiments, i.e. post-IR BLSL, post-BL IRSL 

experiments, pulse annealing test, dose response test and laboratory fading rate test. 

Our results suggest that the luminescence characteristics of IRSL and BLSL and their 

relationship are dependent on stimulation temperature. For IR stimulation at a 

relatively high temperature of 200 °C, at least two components of IRSL signals are 

involved in the process. One component of IRSL signals can be easily bleached by BL 

stimulation at 60 °C, while the other is relatively hard to be bleached by BL 

stimulation at 60 °C. The two components have different luminescence properties, 

such as thermal stability, dose response and laboratory fading rate.  

 

Keywords: K-feldspar, IRSL, BLSL, component 

 

1. Introduction 
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Both quartz and potassium-rich feldspar (K-feldspar) have been widely used as 

natural dosimeters for optically stimulated luminescence (OSL) dating (Aitken, 1998). 

Compared with quartz OSL, the infrared stimulated luminescence (IRSL) signal from 

K-feldspar (Hütt et al., 1988) has advantages of much brighter luminescence signals 

and much higher dose saturation level, making feldspar as an attractive candidate for 

luminescene dating of the natural sedimentary samples. However, the usage of 

K-feldspar for dating has long been hindered by the anomalous fading of the trapped 

charges related to the IRSL signals (e.g. Spooner, 1994; Huntley and Lamonthe, 2001; 

Li and Li, 2008). 

 More recently, progress in understanding anomalous fading in feldspar has raised 

the prospect of isolating a non-fading component from the IRSL at relatively high 

temperatures (Thomsen et al., 2008; Li, 2010; Jain and Ankjærgaard, 2011; Li and Li, 

2013). Correspondingly, a two-step post IR IRSL (pIRIR) protocol (Buylaert et al., 

2009; Thiel et al., 2011) and a multi-elevated-temperature post-IR IRSL (MET-pIRIR) 

protocol (Li and Li, 2011a) have been proposed to overcome anomalous fading for 

dating K-feldspar from sediments, which offer the promising potential for extending 

the luminescence dating limit (Thiel et al., 2011; Li and Li, 2012; Li et al., 2013, 

2014a). However, the high temperature pIRIR signal (e.g. >200 °C) is found to be 

more difficult to bleach than the IRSL signal measured at lower temperatures (Li and 

Li, 2011a; Buylaert et al., 2012; Murray et al., 2012), and it usually requires up to 

several hours or even days of exposure to sunlight or a solar simulator to bleach the 

pIRIR signal down to a stable level (here the term “bleach” means to reduce the 

luminescence intensity by optical stimulation). For some samples, a significant 

non-bleachable (or residual) component in the pIRIR signals was left even after a 

prolonged bleaching period using solar simulator or sunlight (Buylaert et al., 2011; 

Lowick et al., 2012; Chen et al., 2013; Li et al., 2014b). These studies suggest that the 

IRSL signals recorded at relatively high temperature have different luminescence 

behavior compared with the IRSL signals at room temperature.  

There have been several studies conducted to explore the relationship between 
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luminescence with IR stimulation and luminescence with visible wavelength light 

stimulation. It was demonstrated that the majority of green light stimulated 

luminescence (GLSL) can be bleached by prolonged IR light and an upper limit of ～

90% GLSL was depleted as a result of IR bleaching at room temperature (Duller and 

Bøtter-Jensen, 1993; Galloway, 1994). Jain and Singhvi (2001) concluded that the 

blue-green (BG) stimulated luminescence measured at 125 °C is associated with at 

least two trap populations. One trap population is responsive to both IR stimulation 

and BG stimulation. Another trap population is only responsive to BG stimulation. 

Gong et al. (2012) conducted a study on the relationship between the infrared 

stimulated luminescence (IRSL) and blue light stimulated luminescence (BLSL) at 

60 °C. They observed that most of the IRSL signals at 60 °C can be bleached by BL at 

60 °C, while the BLSL signals at 60 °C can only be partially bleached by IR at 60 °C. 

The sources for the IRSL at 60 °C are mainly associated with the fast and medium 

components of the BLSL at 60 °C.  

In this study, in order to better understand the sources of the traps associated with 

the IRSL and BLSL, we further explore the relationship between IRSL and BLSL 

using K-feldspar from two aeolian sand samples. The luminescence properties, in 

terms of thermal stability, dose response and laboratory fading rate, are also examined 

for the different IRSL components at a relatively high temperature of 200 °C.  

 

2. Samples and equipment 

 

   Two aeolian sand samples (HSDK-11 and SY) from the Hunshandake desert in 

northeast China were used in this study. Both samples have been investigated in 

previous studies (Li et al., 2002; Gong et al., 2013). The samples are from the same 

environmental settings of the same region and have similar luminescence behaviors, 

so the experimental results obtained from them should be comparable. The samples 

were treated with 10 % hydrochloric acid (HCl) and 10 % hydrogen peroxide (H2O2) 

to remove carbonate and organic matter, respectively, in subdued red light in the 

Luminescence Dating Laboratory, the University of Hong Kong. Grains of 150-180 
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μm in diameter were obtained by dry sieving. The K-feldspar grains were separated 

with heavy liquids (2.58 g·cm-3) and then etched for 40 min with diluted (10 %) 

hydrofluoric acid (HF) to clean the grains. HCl (10 %) was used again to dissolve any 

contaminating fluorides after etching before final rinsing and drying. K-feldspar 

grains were prepared by mounting the grains in a monolayer, on a 9.8 mm diameter 

aluminum disc with “Silkospay” silicone oil. 

The luminescence measurements of the sample HSDK-11 were carried out with an 

automated Risø TL-DA-15 reader equipped with an IR LED array (880 nm, FWHM 

40 nm) and a blue LED array (470 nm, FWHM 20 nm) in the Luminescence Dating 

Laboratory, the University of Hong Kong. The IR and BL stimulations deliver ~135 

mW·cm-2 and ~50 mW·cm-2 at the sample position, respectively (Bøtter-Jensen et al., 

2003). To keep our results comparable with those from Gong et al. (2012), 90% of the 

full power was used for stimulation in this study. Irradiations were carried out within 

the reader using a 90Sr/90Y beta source which delivered a dose rate of 0.0761 Gy·s-1 to 

K-feldspar on aluminum discs. The IRSL and the BLSL signals were both detected 

after passing through 7.5-mm-thick U-340 filters, which mainly pass light from 290 

nm to 370 nm with peak transmission at ~340 nm (Li et al., 2007b). The experimental 

work on the other sample SY was performed in the Luminescence Dating Laboratory, 

Institute of Geology and Geophysics, Chinese Academy of Sciences. The 

luminescence measurements of the sample SY were carried out with an automated 

Risø TL/OSL reader (TL/OSL-DA-15) using the similar equipment setting. The 

90Sr/90Y beta source in the equipment delivered a dose rate of 0.0837 Gy·s-1 to 

K-feldspar on aluminum discs. 

 

 

3. Experimental details and results 

 

3.1 The relationship between the IRSL and the BLSL at different stimulation 

temperatures  

Two sets of experiments, namely post-IR BLSL (pIR-BLSL) and post-blue light 
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IRSL (pBL-IRSL), are conducted to investigate the relationship between the IRSL and 

the BLSL at different stimulation temperatures. For simplification, we describe the 

stimulation temperatures used in the prior IR and post-IR BLSL as pIR(T1)-BLSL(T2), 

where T1 is the stimulation temperature used in the prior IR measurement and T2 is 

the temperature used in post-IR BLSL measurement.  

 

3.1.1 pIR-BLSL experiments  

 

The pIR-BLSL experiments were carried out using the procedure listed in Table 1. 

Four aliquots of of K-feldspar grains HSDK-11 were firstly heated to 500 °C and then 

given a dose of 30.4 Gy. These aliquots were subsequently preheat at 280 °C for 10 s 

and then bleached using IR stimulation at a temperature of T1 for different periods 

ranging from 0 to 5000 s. The pIR-BLSL signal (Lx) was then measured at a 

temperature of T2. After that, a test dose of 15.2 Gy was applied and the induced 

BLSL signal (Tx) was measured following the same preheat to monitor sensitivity 

change for Lx. The signals for both Lx and Tx were calculated from the integrated 

photon counts in the first 1 s of stimulation, with subtraction of the instrumental 

background signal. The experiments are conducted at a set of different temperature 

combinations, i.e. pIR(60)-BLSL(60), pIR(100)-BLSL(60), pIR(150)-BLSL(60), 

pIR(200)-BLSL(60) and pIR(200)-BLSL(200), respectively. 

The IR bleaching effects on the pIR-BLSL signal for different periods of time are 

shown in Fig. 1. It is observed that the IR bleaching at higher temperatures can 

deplete the BLSL at 60 °C at a faster rate than IR stimulation at lower temperatures. 

The BLSL at 60 °C was bleached to about 5 % of the initial intensity after IR 

bleaching at 200 °C for 5000 s. In comparison, the BLSL at 60 °C was bleached to 

about 15 % of the initial intensity after IR bleaching at 60 °C for 5000 s. If we 

increase the stimulation temperature in BLSL from 60 to 200 °C, i.e. pIR(200)-BLSL 

(200), the IR stimulation at 200 °C can bleach the most of the traps associated with 

the BLSL at 200 °C and only 6 % of the initial intensity of the BLSL at 200 °C was 

remaining after IR bleaching at 200 °C for 5000 s (Fig. 1). The results suggest that 
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both the BLSL measured at 60 °C and the BLSL at 200 °C can only be partially 

bleached by prolonged (up to 5000 s) IR stimulation even at a relatively high 

temperature (i.e. 200 °C). 

In our previous study (Gong et al., 2012), it was found that the BLSL signals 

measured at 60 °C for the K-feldspar from sample HSDK-11 can be described using 

three first-order exponential components, which are termed as fast (F), medium (M) 

and slow (S) components. Gong et al. (2012) demonstrated that the sources for the 

IRSL at 60 °C are mainly associated with the fast and medium components of the 

BLSL at 60 °C. To further demonstrate the relationship between IRSL signal at 

relatively high temperatures and BLSL at 60 °C, the residual BLSL at 60 °C after IR 

bleaching for different time from 0 s to 5000 s were then fitted using three OSL 

components. It is found that the pIR-BLSL signals can be well described by the three 

exponential functions (all R2 > 0.96). The relative ratios of the decay rates of the 

components of BLSL at 60 °C, i.e. bf/bm and bm/bs, are calculated at 4.87±0.14 and 

10.69±0.41, respectively (here the parameters of bf, bm and bs refer to the decay rate 

of the fast, medium and slow components of BLSL at 60 °C, respectively). It is noted 

that the assumption of that the BLSL process is first-order may not be true. However, 

this will not influence our conclusion because it is the relationship between the 

different parts of BLSL (represented by the fast, medium and slow components) and 

IRSL that is crucial for our study, rather than whether these components are first-order 

or not. We, however, acknowledge that there may be some uncertainty associated with 

the fitting and some results demonstrated by Fig. 2 and Fig. 6 might be partially 

influenced if these components are not first-order.  

Fig. 2a illustrates four representative pIR-BLSL signals, which are fitted into three 

components. The results of IR bleaching for the fast, medium and slow component of 

BLSL at 60 °C are shown in Fig. 2b. It is observed that the IR stimulation at 200 °C 

for 5000 s can deplete 99 % of the fast component, ~99 % of the medium component 

but only ~38 % of the slow component for the BLSL at 60 °C, while IR stimulation at 

60 °C for 5000 s can only deplete ~97 % of fast component, ~91 % of medium 

component and ~12 % of slow component, respectively, for the BLSL at 60 °C. These 
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results indicate that IRSL obtained at 200 °C involves more traps associated with 

hard-to-bleach components (i.e. the medium and slow components) of BLSL at 60 °C 

than does the IR stimulation at 60 °C. The results are consistent with previous studies 

that the IRSL signals at high temperatures (e.g. >200 °C) are relatively harder to 

bleach than the IRSL at 60 °C (Buylaert et al., 2011; Li and Li, 2011a; Chen et al., 

2013).  

The relationship between the IRSL and BLSL at different temperatures is further 

studied by investigating the relationship between the emitted light counts from the 

IRSL and the corresponding lost counts obtained from the pIR(T1)-BLSL(T2) 

experiments (T1= 60, 100, 150, 200 °C; T2= 60, 200 °C). This is similar to the method 

applied to study the relation between IRSL and thermoluminescence (TL) by Duller 

(1995). In Fig. 3, we plot the emitted counts from the IRSL, against the corresponding 

lost counts of the pIR-BLSL as a result of IR bleaching. It is observed that, if the 

stimulation temperature for IR and BL was identical in both cases (i.e. 

pIR(60)-BLSL(60) and pIR(200)-BLSL(200)), the emitted counts of the IRSL have a 

nearly 1:1 relationship with the corresponding lost counts in the pIR-BLSL. However, 

in the case of T1>T2, the emitted counts of the IRSL are larger than the corresponding 

lost counts in pIR-BLSL, indicating that the relationship between BLSL and IRSL is 

dependent on the stimulation temperature. It is to be noted that such a relationship 

between IRSL and BLSL is not influenced by the interference of isothermal TL, 

because the preheat at 280 °C for 10 s is sufficient to remove any isothermal TL at 

200 °C. One straightforward explanation for the temperature dependency of the 

relationship is that at least two components are involved in the IRSL at the relatively 

high temperature (such as the IRSL at 200 °C). One component is responsive to the 

BL at 60 °C. The other is hard to reach by BL at 60 °C, but can be accessed at higher 

temperatures. The results further support fact that the IRSL signals at relatively high 

temperatures are relatively harder to bleach than the IRSL at 60 °C (e.g. Chen et al., 

2013). 

 

3.1.2 pBL-IRSL experiments  
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The effects of BL bleaching at 60 °C and 200 °C on the IRSL signals at different 

temperatures (60, 100, 150 and 200 °C) are investigated using pBL-IRSL experiments 

(see the procedures listed in Table 1). The experiments conducted are 

pBL(60)-IRSL(60), pBL(60)-IRSL(100), pBL(60)-IRSL(150), pBL(60)-IRSL(200) 

and pBL(200)-IRSL(200), respectively. Four aliquots of K-feldspar grains of 

HSDK-11 were firstly heated to 500 °C to remove any residual signals and then given 

the same irradiation dose of 30.4 Gy. These aliquots were then held at 280 °C for 10 s. 

They were subsequently bleached with BL at 60, 200 °C for different periods from 0 

to 320 s before IRSL measurements. After that, the IRSL sensitivity was monitored 

and measured following a test dose of 15.2 Gy and preheat at 280 °C for 10 s.  

The remnant IRSL at different temperatures (50, 100, 150 200 °C) as a result of 

BL bleaching at 60, 200 °C for different periods of time are shown in Fig. 4. It is 

demonstrated that the IRSL at 60 °C can be bleached to a negligible level (~0.2 %) by 

BL stimulation at 60 °C for 320 s, while 3.5 % of the initial IRSL at 200 °C still 

remains after BL bleaching at 60 °C for 320 s. These results indicate that, compared 

with the IRSL at 60 °C, the IRSL at 200 °C involves more traps that are harder to 

bleach by BL at 60 °C. However, the IRSL at 200 °C can be bleached to a negligible 

level (~0.2 %) by BL stimulation at 200 °C for 320 s. In addition, the decay rates in 

the pBL(200)-IRSL (200) and the pBL(60)-IRSL(60) are very similar and they are 

calculated at 0.23 ±0.02 s-1 and 0.21 ±0.01 s-1, respectively. These results further 

suggest that the relationship between the IRSL and the BLSL is dependent on 

stimulation temperature. 

Further investigation is made on the relationship between the emitted counts from 

the BLSL and the corresponding lost counts from pBL(T1)-IRSL(T2) (T1= 60, 200 °C; 

T2= 60, 100, 150, 200 °C) (Fig. 5). It is observed that the emitted counts from the 

BLSL measured both at 60 °C and at 200 °C are significantly larger than the 

corresponding lost counts from pBL(T1)-IRSL(T2). These results indicate that BL can 

access much more traps than IR stimulation. Only part of traps associated with the 

BLSL at 60 °C and at 200 °C is accessible by IR stimulation, which is similar to the 
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results of IRSL observed at 60 °C (Gong et al, 2012). It is also demonstrated that 

relationship between emitted BLSL counts and lost counts of pBL-IRSL changes as 

the stimulation temperature changes.  

To further demonstrate the relationship between different OSL components of the 

BLSL signal at 60 °C and the IRSL signals at relatively high temperatures, the emitted 

light counts from different OSL components of the BLSL signal at 60 °C are 

compared with the corresponding lost counts from the pBL(60)-IRSL(200) and 

pBL(60)-IRSL(60) as a result of BL bleaching at 60 °C for different periods. We plot 

the emitted counts from the various OSL components of the BLSL at 60 °C, against 

the lost counts of IRSL at 60 °C and IRSL at 200 °C as a result of BL bleaching in Fig. 

6. It is observed that the lost counts in pBL(60)-IRSL(200) are larger than the sum of 

the emitted light counts of the fast and medium components of BLSL at 60 °C, while 

the lost counts in pBL(60)-IRSL(60) have a nearly 1:1 relationship with the sum of 

the emitted light counts of the fast and medium components of BLSL at 60 °C. These 

results indicate that the IRSL signals at 200 °C are involved with not only the fast and 

medium components of BLSL at 60 °C, but also some other OSL components (e.g. 

slower components of BLSL at 60 °C). In contrast, there is a close relationship 

between IRSL at 60 °C and the fast and medium components of BLSL at 60 °C (Gong 

et al., 2012). The results are consistent with the observations in previous section 3.1.1. 

In summary, the results from the pIR-BLSL and pBL-IRSL bleaching experiments 

suggest that the relationship between IRSL and BLSL is dependent on stimulation 

temperature. At least two components of traps are involved in the IRSL measured at 

elevated temperatures (e.g., 200 °C). One component can be easily bleached by BL at 

60 °C, and the other of the IRSL is relatively harder to access by BL at 60 °C. The 

results show that the IRSL signals at relatively high temperatures are harder to be 

bleached than the IRSL at room temperature. 

 

3.2   Luminescence properties of IRSL at relatively high temperature 

 

The luminescence characteristics of the IRSL at 200 °C, the pIR(60)-IRSL(200) 
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and the pBL(60)-IRSL(200), including thermal stability, dose response and laboratory 

fading rate, were further investigated. In both the pIR(60)-IRSL(200) and the 

pBL(60)-IRSL(200) experiments, the IR and BL bleaching time was both fixed at 200 

s.  

 

3.2.1 Thermal stability study  

 

The thermal stability studies are carried out using the pulse annealing test (Table 2) 

(Li et al., 1997; Li and Tso, 1997). The tests were conducted for the IRSL at 60 °C, 

the IRSL at 200 °C, the pIR(60)-IRSL(200) and the pBL(60)-IRSL(200), respectively. 

An aliquot of K-feldspar of SY was firstly heated to 500 °C and then given an 

irradiation dose of 30.4 Gy. After that, it was preheated at 280 °C for 10 s and then 

heated to a temperature at T °C before the remaining IRSL was measured at 60 °C for 

160 s. The sensitivity change was monitored by measuring the IRSL signal at 60 °C 

from a test dose of 30.4 Gy. The same preheat condition (280 °C for 10 s) was applied 

for the test dose IRSL measurement. This cycle was repeated by increasing the 

annealing temperature (T) from 160 °C to 500 °C in steps of 20 °C. The similar pulse 

annealing test procedures were also conducted for the IRSL at 200 °C, the 

pIR(60)-IRSL(200) and the pBL(60)-IRSL(200) (Table 2). The heating rate for all 

these pulse annealing experiments was 3 °C·s-1. 

The typical decay curve of the pBL(60)-IRSL(200) signal is shown in Fig. 7. The 

results of the pulse annealing test of the IRSL at 60 °C, the IRSL at 200 °C, the 

pIR(60)-IRSL(200) and the pBL(60)-IRSL(200) are shown in Fig. 8. It is observed 

that the thermal stability of the IRSL at 200 °C is relatively more stable than that of 

the IRSL at 60 °C. Li and Li (2011b; 2013) also observed the different thermal 

stabilities among the IRSL at different stimulation temperatures. In addition, it is 

found that both pIR(60)-IRSL(200) and pBL(60)-IRSL(200) is more thermally stable 

than IRSL at 200 °C. The results suggest that at least two components are involved in 

the IRSL at 200 °C and the components have significantly different thermal stability. 

Both IR at 60 °C and BL at 60 °C can remove the thermally relatively unstable 
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component of IRSL 200 °C. It is interesting to be noted that the pBL(60)-IRSL(200) 

is significantly more thermally stable than pIR(60)-IRSL(200), indicating that the BL 

at 60 °C is more efficient than IR at 60 °C to reduce thermally unstable component in 

the IRSL at 200 °C.  

 

3.2.2 Dose response curves 

 

Different shapes of dose response curve (DRC) may provide an indication of 

different origins of different luminescence signals (Gong et al., 2012). Here we 

compare the DRC of the IRSL at 200 °C from K-feldspar with that of the 

pBL(60)-IRSL(200). Regenerative doses ranging from 0 to 1950 Gy were employed 

in a single aliquot regeneration (SAR) protocol for the IRSL at 200 °C. A test dose of 

52 Gy was applied and the test dose signal (Tx) was measured to monitor and correct 

for sensitivity change. A recycle dose at 26 Gy was used and the recycling ratios all 

fall within the range of 1.0 ± 0.05 for the sample. The preheat temperature (held at 

280 °C for 10 s) was the same for regeneration and test dose measurements. A 

cut-heat to 500 °C was used between each of the SAR cycles to clean the residual 

signals from the previous cycle. The IRSL signals Lx and Tx were calculated from the 

integrated photon counts in the first 1 s of stimulation, with subtraction of a 

background signal derived from the last 10 s of the 160 s stimulation. For construction 

the DRC of the pBL(60)-IRSL(200), a similar SAR procedure was applied, except 

that a BL bleaching at 60 °C for 200 s was added before each IRSL measurement for 

both the regenerative and test dose measurements. The dose response curves for the 

two signals are shown in Fig. 9. It is found that the pBL(60)-IRSL(200) signal have a 

different dose saturation level with the IRSL at 200 °C.  

If the two dose response curves are fitted with double saturation exponential 

function (equation 1),  

0 0, 0,(1 exp( / ) (1 exp( / )a a b bI I I D D I D D                                                     (1) 

The dose saturation level of two D0 (D0,a and D0,b) parameters are 42.9±5.8 Gy 
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and 289.7±22.4 Gy for the pBL(60)-IRSL(200) signal, while the values of two D0 

(D0,a and D0,b) parameters of the IRSL at 200 °C are significantly higher at 214.6±9.9 

Gy and 806.1± 69.6 Gy, respectively. The results indicate that at least two 

components are involved in the IRSL at elevated temperature. One group is easy to 

bleach by BL at 60 °C and they have a higher dose saturation level, while the other 

group is hard to bleach by BL at 60 °C and they have a lower dose saturation level. 

 

3.2.3 Laboratory fading test  

   

Anomalous fading was observed for both IRSL and BLSL signals in previous 

studies (e.g. Thomsen et al., 2008). Here we studied the laboratory fading rates for the 

IRSL at 200 °C, the pIR(60)-IRSL(200) and the pBL(60)-IRSL(200) signals. In 

measurement of the IRSL at 200 °C, six aliquots of SY were heated to 500 °C to 

remove any residual signals (similar to a hot-bleach between SAR cycles). Then these 

aliquots were given 50.8 Gy and immediately preheated at 280 °C for 10 s. The 

sensitivity corrected signals were then measured after delays of different periods. For 

the test dose, 12.7 Gy was given and the same preheat condition was applied. The 

IRSL signals L(x) and T(x) were calculated from the integrated photon counts in the 

first 1 s of stimulation, with subtraction of a background signal derived from the last 

10 s of the 160 s stimulation. The first measurement of the IRSL at 200 °C signal took 

place at a time tc= 562 s after the mid-point of the irradiation time. A similar 

measurement procedure was adopted for measuring the fading rate for the 

pIR(60)-IRSL(200) and pBL(60)-IRSL(200) signals. For the pIR(60)-IRSL(200) 

signal, an IR bleaching at 60 °C for 200 s was added before the IRSL measurement at 

200 °C for both the regenerative and test dose measurements. The first measurement 

of the pIR(60)-IRSL(200) signal took place at a time tc= 669 s after the mid-point of 

the irradiation time. For the pBL(60)-IRSL(200) signal, a BL bleaching at 60 °C for 

200 s was added before the IRSL measurement at 200 °C for both the regenerative 

and test dose measurements. The first measurement of the pBL(60)-IRSL(200) signal 

took place at a time tc= 669 s after the mid-point of the irradiation time. The decay of 
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the IRSL at 200 °C, the pIR(60)-IRSL(200) and the pBL(60)-IRSL(200) signals after 

normalization as a function of storage time is shown in Fig 10. The corresponding 

anomalous fading rates (g-value) are calculated based on the data sets and are also 

shown in Fig. 10. It is observed that the IRSL at 200 °C, the pIR(60)-IRSL(200) and 

the pBL(60)-IRSL(200) have significantly different laboratory fading rates. The g 

value for the IRSL at 200 °C was detected at 4.0±0.3 %/decade, the g value of the 

pIR(60)-IRSL(200) was at 1.6±0.4 %/decade and the pBL(60)-IRSL(200) was 0.4±

0.4 %/decade. This result indicates that there are at least two components for the IRSL 

at 200 °C. One component is easy to bleach by IR at 60 °C and BL at 60 °C and it has 

higher laboratory fading rate, while the other is hard to bleach by IR at 60 °C and BL 

at 60 °C and it has a significantly lower fading rate.  

  

4.  Discussion 

The sources and process of the traps associated with IRSL from feldspar are 

important for developing reliable dating methods. Different models have been 

proposed to explain the various luminescence behaviors of feldspars. A single trap 

model has been proposed recently to explain the luminescence characteristics for 

feldspar (e.g., Jain and Ankjærgaard, 2011; Anderson et al., 2012), while a multi-trap 

model is suggested alternatively by others (e.g., Duller and Bøtter-Jensen, 1993; Li 

and Li, 2011; Thomsen et al., 2011; Li et al., 2014). These studies were based on their 

own experimental designs with limited experimental conditions and the explanations 

are based on different assumptions, so a unique interpretation cannot be reached. It is 

hoped that the study of the relationship between BLSL and IRSL could be helpful for 

understanding the source and process of IRSL, because, unlike IRSL process, BLSL is 

expected to be a simpler and delocalized process due to the higher photon energy of 

BL (~2.64 eV) compared to the main IRSL trap depth (~2.5 eV) (e.g. Baril and 

Huntley, 2003; Kars et al., 2013). Based on our results, we are in favor of the 

multiple-trap model to explain the experimental data obtained in this study, which 

cannot be well explained using a simple single-trap model. The pieces of evidence are 

given as follows:  
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(1) If we assume that IRSL at 200 °C and 60 °C originate the same traps and then 

both signals should be depleted by BL at a similar rate, because BL have energy high 

enough to evict the trapped electron to the conduction band and then the electron can 

randomly recombine with both close and distant holes. In Fig. 4, it is clearly shown 

that, compared with the IRSL at 60 °C, the IRSL at 200 °C is bleached at the 

significantly slower rate by BL at 60 °C, suggesting that IRSL signals at 200 °C are 

involved with traps which are very hard to bleach by BL at 60 °C. This could be due 

to either that the hard-to-bleach component has a deeper trap depth (>2.5 eV) or that 

the component has a different photoionization cross-section, which both indicate a 

different trap from the easy to bleach component.  

(2) During the pIR(60)-BLSL(60) experiments, the emitted counts of the IRSL 

have a nearly 1:1 relationship with the corresponding lost counts in the pIR-BLSL. 

However, this is not the case for the pIR(200)-BLSL(60) (Fig. 3). This indicates that 

IRSL at elevated temperature can access more traps that are more difficult to bleach 

by BL at 60 °C. 

(3) The pBL(60)-IRSL(200) and IRSL signals at 200 °C have very different 

luminescence properties, such as thermal stability, dose response and fading rate. 

Since BL have energy high enough to evict the trapped electron to the conduction 

band, the electron will randomly recombine with close or distant holes after excitation. 

Hence, BL will cause not only recombination of spatially close electron-hole pairs, 

but also recombination of distant electron-hole pairs. As a result, BL bleaching should 

not change the relative proportions between close and distant electron-hole pairs. 

Correspondingly, it is expected that the pBL-IRSL should have a similar thermal 

stability as IRSL, and the pIR-IRSL should have a higher thermal stability than 

pBL-IRSL. Our results, however, showed that the pBL(60)-IRSL(200) is significantly 

more thermally stable than both the IRSL at 200 °C and pIR(60)-IRSL(200) (Fig. 8), 

which cannot be explained by the single-trap model. Similarly, a similar fading rate 

should be expected for the IRSL(200) and pBL(60)-IRSL(200) signals based on a 

single-trap model. For our samples, the g values for the IRSL at 200 °C are greatly 

reduced after the BL bleaching at 60 °C for 200 s (Fig. 10). It is interesting to be 
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noted that the laboratory fading rate of pBL(60)-IRSL(200) is significantly lower than 

that of pIR(60)-IRSL(200), suggesting that the BL at 60 °C is more efficiently than 

the IR at 60 °C to remove spatially close electron-hole pairs (easy-to-fade), which 

cannot be explained by a single trap model. 

Based on the above arguments, we think that a single trap model is not sufficient 

to explain all the luminescence phenomena in feldspar. In the future, it is maybe 

helpful to use time-resolved optically stimulated luminescence (TR-OSL) technique 

to further study the luminescence behaviors of K-feldspar (e.g. Chithambo and 

Galloway, 2001). 

Another outcome of our study is that we first demonstrate that the 

pBL(60)-IRSL(200) has a high thermal stability and a negligible fading rate, which 

opens the potential of using this signal in sediments dating without the corrections for 

anomalous fading. A potential advantage of using pBL(60)-IRSL(200) is that blue 

bleaching at 60 °C can eliminate the contribution of quartz grains to IRSL at elevated 

temperatures (Fan et al., 2009). Quartz grains can coexist with K-feldspar after heavy 

liquid separation. The IRSL of quartz at elevated temperatures can be effectively 

bleached by blue light at low temperatures, but not by infrared. Further tests on the 

applicability in dating are required to confirm the suitability of using the pBL-IRSL at 

relatively high temperatures. 

 

5. Conclusions 

 

From the pIR-BLSL and pBL-IRSL bleaching experiments, it is concluded that 

the relationship between IRSL and BLSL is dependent on the stimulation temperature. 

If stimulation temperatures for the IRSL increase from 60 to 200 °C, at least two 

components are associated with the IRSL at 200 °C. One component is easy to bleach 

by BL at 60 °C, and the other relative hard to bleach by BL at 60 °C. The two 

components of the IRSL at 200 °C have significantly different luminescence 

properties, in terms of thermal stability, dose saturation level and laboratory fading 

rates.  
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Figure captions 

 

Figure 1: Remnant BLSL measured at 60 °C and 200 °C after IR bleaching at 

different temperature for different times. The temperatures for IR bleaching were set 

at 60, 100, 150 and 200 °C, respectively. 

 

Figure 2: (a) four representative pIR-BLSL signals, which are then deconvoluted into 

three components. For each of the fitting, the F-statistics are provided and they are all 

significantly larger than F0.01 (e.g. Adamiec, 2005). The corresponding residuals are 

shown at the right. (b) The residual fast, medium and slow components of BLSL at 

60 °C after IR bleaching for different time from 0 s to 5000 s. To better demonstrate 

the data, the residual fast and medium components of BLSL at 60 °C after IR 

bleaching for different time from 0 s to 320 s were further shown in the insets, while 

the y-axis in the insets is on the logarithmic scale. The data were from sample 

HSDK-11 and the fast, medium and slow components of BLSL at 60 °C were fitted 

with the decay rates of 0.375±0.004 s-1, 0.077±0.002 s-1 and 0.0072±0.0002 s-1, 

respectively, the same as Gong et al. (2012). 

 

Figure 3: The relationship between emitted counts of the IRSL and the corresponding 

lost counts of pIR(T1)-BLSL(T2) as a result of IR bleaching for different time. T1= 60, 

100, 150, 200 °C, T2= 60, 200 °C respectively. 

   

Figure 4: Remnant IRSL after blue light bleaching at 60 °C and 200 °C for different 

times. The temperatures for IR stimulations were set at 60, 100, 150 and 200 °C, 

respectively. 

 

Figure 5: The relationship between emitted counts of the BLSL and the corresponding 

lost counts of pBL(T1)-IRSL(T2) as a result of blue light bleaching for different time. 

T1= 60, 200 °C, T2= 60, 100, 150, 200 °C, respectively. 
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Figure 6: The relationship between emitted counts of OSL components of BLSL at 

60 °C and the lost counts of pBL(60)-IRSL(200) and pBL(60)-IRSL(60) as a result of 

blue light bleaching at 60 °C for different times. F+M: The sum of fast and medium 

components of the BLSL at 60 °C; S: slow component of the BLSL at 60 °C. The data 

were from sample HSDK-11. 

 

Figure 7: The typical decay curves of the pBL(60)-IRSL(200) from sample HSDK-11. 

All the signals were normalized using the initial intensity of the pBL(60)-IRSL( 200). 

 

Figure 8: Pulse annealing curves based on the IRSL signal at 60 °C, the IRSL signal at 

200 °C, pIR(60)-IRSL(200) and the pBL(60)-IRSL(200) signal; In the 

pIR(60)-IRSL(200) and pBL(60)-IRSL(200) experiments, the previous IR stimulation 

and BL stimulation at 60 °C are both at 200 s. The heating rate was 3 °C·s-1. 

 

Figure 9: Dose response curves of the IRSL signal at 200 °C and the 

pBL(60)-IRSL(200) signal. The two dose response curves could be fitted well by the 

double saturation exponential function (R2>0.99; residuals are shown in the inset). 

  

Figure 10: Anomalous fading tests for IRSL signal at 200 °C, the pIR(60)-IRSL(200) 

and the pBL(60)-IRSL(200) signal using six aliquots from sample SY as a function of 

delayed period (t).  
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Figure 1  
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Figure 2a 
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Figure 2b 
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Figure 3  
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Figure 4  
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Figure 5 
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Figure 6  
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Table 1 

Experimental procedures for the pIR(T1)-BLSL(T2) and pBL(T2)-pIRSL(T1) 

experiments. T1 were set at 60,100, 150, 200 °C respectively, while T2 were set at 60 

and 200 °C. 

 

 pIR(T1)-BLSL(T2)  pBL(T2)-pIRSL(T1)  

Step Treatment Observed Treatment Observed 

(1) Cut-heat to 500 °C  Cut-heat to 500 °C  

(2) Regenerative dose (30.4 Gy)  Regenerative dose (30.4 Gy)  

(3) Preheat to 280 °C for 10 s  Preheat to 280 °C for 10 s  

(4) IR bleaching at T1 for different time (0-5000 s)  BL bleaching at T2 for different time (0-320 s)  

(5) BLSL measurement at T2 for 200 s  L pIR-BLSL IRSL measurement at T1 for 160 s L pBL-IRSL 

(6) Test dose (15.2 Gy)  Test dose (15.2 Gy)  

(7) Preheat to 280 °C for 10s  Preheat to 280 °C for 10s  

(8) BLSL measurement at T2 for 200 s T BLSL IRSL measurement at T1 for 160 s T IRSL 

(9) Return to step 1 and time for bleaching changes  Return to step 1 and time for bleaching changes  
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Table 2  

Pulse annealing procedures for the IRSL at 60 °C, the IRSL at 200 °C, the 

pIR(60)-IRSL(200) and the pBL(60)-IRSL(200). Note that the sequence of IRSL at 

60 °C is steps 1, 2, 3, 4, 5a, 6, 7, 8a and 9, the sequence of IRSL at 200 °C is steps 1, 

2, 3, 4, 5b, 6, 7, 8b and 9, the sequence of pIR(60)-IRSL(200) is steps 1, 2, 3, 3a, 4, 5b, 

6, 7, 8b and 9 and the sequence of pBL(60)-IRSL(200) is steps 1, 2, 3, 3b, 4, 5b, 6, 7, 

8b and 9. 

 

 

Step Treatment Observed 

(1) 

(2) 

(3) 

(3a) 

(3b) 

(4) 

(5a) 

(5b) 

(6) 

(7) 

(8a) 

(8b) 

(9) 

Cut-heat to 500 °C 

Regenerative dose (30.4 Gy) 

Preheat to 280 °C for 10 s 

IR bleaching at 60 °C for 200 s 

BL bleaching at 60 °C for 200 s 

Cut-heat to T °C (160 °C -500 °C) 

IRSL measurement at 60 °C for 160 s  

IRSL measurement at 200 °C for 160 s 

Test dose (30.4 Gy) 

Preheat to 280 °C for 10 s 

IRSL measurement at 60 °C for 160 s 

IRSL measurement at 200 °C for 160 s 

  Return to step 1 and T = T +20 °C 

 

 

 

 

 

 

L(IRSL 60 °C) 

L(IRSL 200 °C) 

 

 

T(IRSL 60 °C) 

T(IRSL 200 °C) 
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