1,243 research outputs found

    Use of Drawing as a Communication Tool for alleviating digital anxiety: Exploring digital anxiety in smart mobile users

    Get PDF
    The ever-present smart mobile device has changed the everyday life of users in both positive and negative ways, and connects users’ lives online and offline. The existence of fewer gaps between online and offline worlds has shaped a new form of social relationship, new ways of thinking, and had sparked changes in smart mobile users’ behaviour. This thesis investigates the problem of digital anxiety among smart mobile users. The aim of this research project is to investigate how digital drawing affects digital anxiety in the smart mobile user. The research is based on the premise that drawing is a communication tool, and it investigates what types of digital drawing content help the smart mobile user relieve their digital anxiety. This research proposes guidelines for the use of drawing to help the smart mobile user who is experiencing digital anxiety. First, I established digital anxiety as a theoretical construct, and then conducted exploratory studies to investigate the practical problems faced by the smart mobile user. I determined the meaning of digital anxiety, and the precise symptoms experienced by the user suffering from digital anxiety, through a theoretical framework and an exploratory study. Lastly, I conducted empirical studies aimed at designing a method of measuring the level of digital anxiety. This method was tested with hundreds of participants, and was used for conducting the digital drawing experiment at the end of my research project. Overall, this thesis establishes the scope for determining digital anxiety, provides a method of quantifying digital anxiety, and demonstrates the use of digital drawing to relieve digital anxiety in the smart mobile user. I conclude that my research investigates the use of drawing as a communication tool for smart mobile users as a way of improving their memory, emotional wellbeing, and social relationships. I hope my research can serve as a guideline or a methodology in the design of an educational programme or high-tech industries on the basis of a cognition-mediated model

    A Study on Charge Selective Transport for Highly Efficient Polymer Based Optoelectronic Devices

    Get PDF
    Department of Materials Science EngineeringPolymer based optoelectronic devices including polymer light-emitting diodes (PLEDs) and polymer solar cells (PSCs) have been recently focused for display, energy source and flexible electronic applications because of their advantages such as low cost, light weight, easy solution process fabrication and mechanical flexibility. Moreover, so much effort has been made to maximize their device performance through optimization of device configuration and charge selective transport. In particular, balanced charge transport via charge selective interfacial engineering or surface modification is promising for optimized device performance. According to the device configuration, interfacial engineering can improve the minority carrier transport with well-matched energy level, passivate the charge trap sites and enhance the materials compatibility. It can also block abundant majority carrier and reduce the exciton quenching, leading to improving the recombination rate of balanced charges in PLEDs while disrupting bimolecular recombination in PSCs. Here, I present variety interfacial engineering strategies employing modified charge transport layer such as graphene oxide (GO) as a hole transport layer (HTL) in conventional PLEDs and surface modified zinc oxide (ZnO) as an electron transport layer (ETL) using ionic liquid molecules (ILMs), conjugated polyelectrolyte (CPE) and amine-based polar solvents in inverted polymer light-emitting diodes (iPLEDs) and polymer solar cells (iPSCs). A GO layer with a wide band gap blocks transport of electrons from an emissive layer to an indium tin oxide (ITO) anode while reduces the exciton quenching between the GO layer and the emissive layer. As a result, the GO layer maximizes hole-electron recombination within the emissive layer leading to improvement of device performance in PLEDs. In addition, surface modified ZnO layers with various interfacial layers such as ILMs, CPE and amine-based polar solvents remarkably enhance the devices performance by introducing spontaneously oriented interfacial dipoles between the ZnO layer and active layer in iPLEDs and iPSCs. This charge selective interfacial engineering is a promising way for organic optoelectronic devices such as organic photovoltaics (OPVs), organic light-emitting diodes (OLEDs), organic thin film transistors (OTFTs), and organic laser diodes (OLDs).ope

    Study of a laser generated diamagnetic cavity and Alfvén waves in a large magnetized plasma

    Get PDF
    Dense plasma expansion into a tenuous magnetized background plasma is prevalent in space and astrophysical environments. In the interaction between plasmas with different densities under the influence of the magnetic field, various hydromagnetic waves are generated including the magnetized collisionless shocks which are believed to be the source of high energy particles, such as galactic cosmic rays from supernova remnants. Despite its importance in astrophysics and the study for longer than five decades, however, details of the shock physics, such as the formation process or the energy dissipation mechanisms are still not fully understood. This work describes experiments carried out at the Large Plasma Device at University of California, Los Angeles, coupled to a kilojoule-laser. When a laser produced dense plasma interacts with a preformed, magnetized background plasma, a diamagnetic cavity is formed which can be pictured as a piston driving a collisionless shock. Understanding the micro-physics of generated diamagnetic cavities is crucial since it is observed in many magnetized plasmas with applied magnetic field and there are still a number of questions to be answered. In a series of experiments performed at different plasma parameters, magnetic flux probes and electron emissive probes are used to diagnose the structure of the diamagnetic cavity perpendicular to the magnetic field, especially at its edge where the collisionless coupling between the debris and ambient plasma takes place. In contrast to lower laser energy, a strong coupling to ambient ions could be observed depending on the background magnetic field although the energy conversion efficiency from the laser to the cavity stayed on the same order of magnitude. A rise of the radial electric field at the cavity edge was detected, which might be a direct evidence for the laminar coupling mechanism between debris and ambient plasmas without any collisional effects. Large fluctuations in the magnetic and electric field measurements in front of the cavity edge, which were also seen in the experimental observations, are assumed to be instabilities causing energy dissipation and the short cavity lifetime which is almost three orders of magnitude shorter than the theoretically derived classical diffusion time. Along the plasma column, soliton-like Alfv\'en waves were detected which might result from the nonlinear interaction between energetic electrons generated at the cavity edge and the surrounding magnetized plasma. Here, a better energy conversion efficiency from the laser to the Alfv\'en waves has been calculated. Finally, the experimental results are compared to two-dimensional hybrid simulations. The observed ion dynamics as well as large fluctuations in the electric field measurements at the cavity edge could be reproduced. An additional study was done on the effect of the polytropic coefficient in the electron temperature equation in the code and it showed that a nonadiabatic electron temperature increase affects the dynamics of the electric field as well as that of the diamagnetic cavity

    The Maritime Jurisdiction Dispute between Korea and Chinese Fishing Boats and Its Resolution

    Get PDF
    在《联合国海洋法公约》(以下简称《公约》)与《韩中渔业协定》生效之后,《韩中渔业协定》没能有效解决“水产资源的管理与保护”、“渔民的基本权利与生存问题”、“执行专属经济区(EEZ)管辖权”这三个方面的冲突,给韩中两国政府海上执法部门带来了许多困惑和难题。每次发生韩国海警与中国渔民的冲突或者死亡事故,韩中两国民众最关心的问题是韩国海警的执法过程是否合法,处置中国渔民有没有公正,怎样预防与解决冲突问题。 如果根据《公约》来分析这些人员伤亡案件,《公约》所规定的法律不能解决各国在行使管辖权过程中的矛盾与冲突。此外,学术界对国家海上管辖权的研究尚不够深入,在许多方面还存在分歧。 为了保障专属经济区...After the United Nations Convention on the Law of the Sea(UNCLOS)and China-Korean Fishery Agreement took effect, both countries simultaneously started ocean jurisdiction system. When starting to implement the jurisdiction system, South Korea and China have foreboded that the problem of conflict between public power and private persons in both countries would occur. However, both countries didn’t e...学位:理学硕士院系专业:海洋与地球学院_海洋事务学号:2232011115432

    Highly circularly polarized white light using a combination of white polymer light-emitting diode and wideband cholesteric liquid crystal reflector

    Get PDF
    We present a simple and intriguing device that generates highly circularly polarized white light. It comprises white polymer light-emitting diodes (WPLEDs) attached to a wideband cholesteric liquid crystal (CLC) reflector with a wide photonic bandgap (PBG) covering the visible range. The degree of circular polarization realized is very high over the visible range. The wide PBG was realized by introducing a gradient in pitch of the cholesteric helix by controlling the twisting power within the CLC medium. WPLEDs fabricated using a ternary (red, green, and blue) fluorescent polymer blend with the same moiety showed a low turn-on voltage, high brightness, high efficiency, and good color stability.open0

    Hybrid organic-inorganic light-emitting electrochemical cells using fluorescent polymer and ionic liquid blend as an active layer

    Get PDF
    We demonstrate enhanced device performance by using a blend of emissive polymer and mobile ionic liquid molecules in hybrid organic-inorganic polymeric light-emitting electrochemical cells with high air stability. The mobile anions and cations redistributed near each electrode/active layer interface make ohmic contacts, thereby enhancing current density and electroluminescence efficiency at relatively low operating voltage.open12

    Efficient hybrid organic-inorganic light emitting diodes with self-assembled dipole molecule deposited metal oxides

    Get PDF
    We investigate the effect of self-assembled dipole molecules (SADMs) on ZnO surface in hybrid organic-inorganic polymeric light-emitting diodes (HyPLEDs). Despite the SADM being extremely thin, the magnitude and orientation of SADM dipole moment effectively influenced the work function of the ZnO. As a consequence, the charge injection barrier between the conduction band of the ZnO and the lowest unoccupied molecular orbital of poly(9,9(')-dioctylfluorene)-co-benzothiadiazole could be efficiently controlled resulting that electron injection efficiency is remarkably enhanced. The HyPLEDs modified with a negative dipolar SADM exhibited enhanced device performances, which correspond to approximately a fourfold compared to those of unmodified HyPLEDs.open442

    A set of stage-specific gene transcripts identified in EK stage X and HH stage 3 chick embryos

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The embryonic developmental process in avian species is quite different from that in mammals. The first cleavage begins 4 h after fertilization, but the first differentiation does not occur until laying of the egg (Eyal-Giladi and Kochav (EK) stage X). After 12 to 13 h of incubation (Hamburger and Hamilton (HH) stage 3), the three germ layers form and germ cell segregation in the early chick embryo are completed. Thus, to identify genes associated with early embryonic development, we compared transcript expression patterns between undifferentiated (stage X) and differentiated (HH stage 3) embryos.</p> <p>Results</p> <p>Microarray analysis primarily showed 40 genes indicating the significant changes in expression levels between stage X and HH stage 3, and 80% of the genes (32/40) were differentially expressed with more than a twofold change. Among those, 72% (23/32) were relatively up-regulated at stage X compared to HH stage 3, while 28% (9/32) were relatively up-regulated at HH stage 3 compared to stage X. Verification and gene expression profiling of these GeneChip expression data were performed using quantitative RT-PCR for 32 genes at developmental four points; stage X (0 h), HH stage 3 (12 h), HH stage 6 (24 h), and HH stage 9 (30 h). Additionally, we further analyzed four genes with less than twofold expression increase at HH stage 3. As a result, we identified a set of stage-specific genes during the early chick embryo development; 21 genes were relatively up-regulated in the stage X embryo and 12 genes were relatively up-regulated in the HH stage 3 embryo based on both results of microarray and quantitative RT-PCR.</p> <p>Conclusion</p> <p>We identified a set of genes with stage-specific expression from microarray Genechip and quantitative RT-PCR. Discovering stage-specific genes will aid in uncovering the molecular mechanisms involved the formation of the three germ layers and germ cell segregation in the early chick embryos.</p

    High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers

    Get PDF
    We present an interfacial engineering strategy employing n-type-metal-oxide/conjugated-polyelectrolyte (CPE) hybrid charge-transport layers for highly efficient polymer light-emitting diodes (PLEDs). The hybrid metal-oxide/CPE layer facilitates electron-injection, while blocking hole-transport, and thereby maximizes electron-hole recombination within the emitting layer. A series of metal-oxide/CPE combinations were tested in inverted PLEDs (FTO/metal-oxide/CPF8BT/MoO3/Au). Specifically, HfO2/CPE double layer achieved an electroluminescence (EL) efficiency of up to 25.8 cd/A (@ 6.4 V, one of the highest values reported for fluorescent PLEDs).open11
    corecore