118 research outputs found

    Galaxy surface photometry

    Get PDF
    We describe galaxy surface photometry based on fitting ellipses to the isophotes of the galaxies. Example galaxies with different isophotal shapes are used to illustrate the process, including how the deviations from elliptical isophotes are quantified using Fourier expansions. We show how the definitions of the Fourier coefficients employed by different authors are linked. As examples of applications of surface photometry we discuss the determination of the relative disk luminosities and the inclinations for E and S0 galaxies. We also describe the color-magnitude and color-color relations. When using both near-infrared and optical photometry, the age-metallicity degeneracy may be broken. Finally we discuss the Fundamental Plane where surface photometry is combined with spectroscopy. It is shown how the FP can be used as a sensitive tool to study galaxy evolution.Comment: 40 pages. Lectures given at the Nordic-Baltic Research Course in Applied Astrophysical Photometry, held September 1999 at the Moletai Observatory, Lithuania. Baltic Astronomy, 8, 535 (1999), in press. Note the year. The paper with Fig. 2, 14 and 15 in original (high) resolution is available at http://www.astro.ku.dk/~milvang/papers/BA_MJ_J.ps.gz or http://www.gemini.edu/documentation/preprints/pre58.htm

    Probing the truncation of galaxy dark matter halos in high density environments from hydrodynamical N-body simulations

    Full text link
    We analyze high resolution, N-body hydrodynamical simulations of fiducial galaxy clusters to probe tidal stripping of the dark matter subhalos. These simulations include a prescription for star formation allowing us to track the fate of the stellar component as well. We investigate the effect of tidal stripping on cluster galaxies hosted in these dark matter subhalos as a function of cluster-centric radius. To quantify the extent of the dark matter halos of cluster galaxies, we introduce the half mass radius r_half as a diagnostic, and study its evolution with projected cluster-centric distance R as a function of redshift. We find a well defined trend for (r_half,R): the closer the galaxies are to the center of the cluster, the smaller the half mass radius. Interestingly, this trend is inferred in all redshift frames examined in this work ranging from z=0 to z=0.7. At z=0, galaxy halos in the central regions of clusters are found to be highly truncated, with the most compact half mass radius of 10 kpc. We also find that r_half depends on luminosity and we present scaling relations of r_half with galaxy luminosity. The corresponding total mass of the cluster galaxies is also found to increase with projected cluster-centric distance and luminosity, but with more scatter than the (r_half,R) trend. Comparing the distribution of stellar mass to total mass for cluster galaxies, we find that the dark matter component is preferentially stripped, whereas the stellar component remains protected by the halo and is much less affected by tidal forces. We compare these results with galaxy-galaxy lensing probes of r_half and find qualitative agreement. (Abridged)Comment: Accepted for publication in Ap

    The Optically Unbiased GRB Host (TOUGH) survey. IV. Lyman-alpha emitters

    Full text link
    We report the results of a spectroscopic search for Lyman-alpha emission from gamma-ray burst host galaxies. Based on the well-defined TOUGH sample of 69 X-ray selected Swift GRBs, we have targeted the hosts of a subsample of 20 GRBs known from afterglow spectroscopy to be in the redshift range 1.8-4.5. We detect Lya emission from 7 out of the 20 hosts, with the typical limiting 3sigma line flux being 8E-18 erg/cm2/s, corresponding to a Lya luminosity of 6E41 erg/s at z=3. The Lya luminosities for the 7 hosts in which we detect Lya emission are in the range (0.6-2.3)E42 erg/s corresponding to star-formation rates of 0.6-2.1 Msun/yr (not corrected for extinction). The rest-frame Lya equivalent widths (EWs) for the 7 hosts are in the range 9-40A. For 6 of the 13 hosts for which Lya is not detected we place fairly strong 3sigma upper limits on the EW (<20A), while for others the EW is either unconstrained or has a less constraining upper limit. We find that the distribution of Lya EWs is inconsistent with being drawn from the Lya EW distribution of bright Lyman break galaxies at the 98.3% level, in the sense that the TOUGH hosts on average have larger EWs than bright LBGs. We can exclude an early indication, based on a smaller, heterogeneous sample of pre-Swift GRB hosts, that all GRB hosts are Lya emitters. We find that the TOUGH hosts on average have lower EWs than the pre-Swift GRB hosts, but the two samples are only inconsistent at the 92% level. The velocity centroid of the Lya line is redshifted by 200-700 km/s with respect to the systemic velocity, similar to what is seen for LBGs, possibly indicating star-formation driven outflows from the host galaxies. There seems to be a trend between the Lya EW and the optical to X-ray spectral index of the afterglow (beta_OX), hinting that dust plays a role in the observed strength and even presence of Lya emission. [ABRIDGED]Comment: ApJ accepted (v2: minor changes in the Subject headings and reference list

    Chasing Lyman alpha-emitting galaxies at z = 8.8

    Full text link
    With a total integration time of 168 hours and a narrowband (NB) filter tuned to Lyman alpha at z = 8.8, the UltraVISTA survey has set out to find some of the most distant galaxies, on the verge of the Epoch of Reionization. Previous calculations of the expected number of detected Lya-emitting galaxies (LAEs) at this redshift did not explicitly take into account the radiative transfer (RT) of Lya. In this work we combine a theoretical model for the halo mass function with numerical results from high-res cosmological hydrosimulations with LyC+Lya RT, assessing the visibility of LAEs residing in these halos. Uncertainties such as cosmic variance and the anisotropic escape of Lya are taken into account, and it is predicted that once the survey has finished, the probabilities of detecting none, one, or more than one are ~90%, ~10%, and ~1%; a significantly smaller success rate compared to earlier predictions, due to the combined effect of a highly neutral IGM scattering Lya to such large distances from the galaxy that they fall outside the observational aperture, and to the actual depth of the survey being less than predicted. Because the IGM affects NB and broadband (BB) magnitudes differently, we argue for a relaxed color selection criterion of NB - BB ~ +0.85. But since the flux is continuum-dominated, even if a galaxy is detectable in the NB its probability of being selected as a NB excess object is <~35%. Various properties of galaxies at this redshift are predicted, e.g. UV and Lya LFs, M*-Mh relation, spectral shape, optimal aperture, and the anisotropic escape of Lya through both a dusty ISM and a partly neutral IGM. Finally, we describe and publish a fast numerical code for adding numbers with asymmetric uncertainties ("x_{-sigma_1}^{+sigma_2}") proving to be significantly better than the standard, but wrong, way of adding upper and lower uncertainties in quadrature separately.Comment: Submitted to A&A, comments are welcom

    The effect of the environment on the structure, morphology and star-formation history of intermediate-redshift galaxies

    Get PDF
    With the aim of understanding the effect of the environment on the star formation history and morphological transformation of galaxies, we present a detailed analysis of the colour, morphology and internal structure of cluster and field galaxies at 0.4≤z≤0.8. We use {\em HST} data for over 500 galaxies from the ESO Distant Cluster Survey (EDisCS) to quantify how the galaxies' light distribution deviate from symmetric smooth profiles. We visually inspect the galaxies' images to identify the likely causes for such deviations. We find that the residual flux fraction (RFF), which measures the fractional contribution to the galaxy light of the residuals left after subtracting a symmetric and smooth model, is very sensitive to the degree of structural disturbance but not the causes of such disturbance. On the other hand, the asymmetry of these residuals (Ares) is more sensitive to the causes of the disturbance, with merging galaxies having the highest values of Ares. Using these quantitative parameters we find that, at a fixed morphology, cluster and field galaxies show statistically similar degrees of disturbance. However, there is a higher fraction of symmetric and passive spirals in the cluster than in the field. These galaxies have smoother light distributions than their star-forming counterparts. We also find that while almost all field and cluster S0s appear undisturbed, there is a relatively small population of star-forming S0s in clusters but not in the field. These findings are consistent with relatively gentle environmental processes acting on galaxies infalling onto clusters

    Ultraviolet Emission Lines in Young Low Mass Galaxies at z~2: Physical Properties and Implications for Studies at z>7

    Get PDF
    We present deep spectroscopy of 17 very low mass (M* ~ 2.0x10^6 Msun to 1.4x10^9 Msun) and low luminosity (M_UV ~ -13.7 to -19.9) gravitationally lensed galaxies in the redshift range z~1.5-3.0. Deep rest-frame ultraviolet spectra reveal large equivalent width emission from numerous lines (NIV], OIII], CIV, Si III], CIII]) which are rarely seen in individual spectra of more massive star forming galaxies. CIII] is detected in 16 of 17 low mass star forming systems with rest-frame equivalent widths as large as 13.5 Angstroms. Nebular CIV emission is present in the most extreme CIII] emitters, requiring an ionizing source capable of producing a substantial component of photons with energies in excess of 47.9 eV. Photoionization models support a picture whereby the large equivalent widths are driven by the increased electron temperature and enhanced ionizing output arising from metal poor gas and stars, young stellar populations, and large ionization parameters. The young ages implied by the emission lines and continuum SEDs indicate that the extreme line emitters in our sample are in the midst of a significant upturn in their star formation activity. The low stellar masses, blue UV colors, and large sSFRs of our sample are similar to those of typical z>6 galaxies. Given the strong attenuation of Ly-alpha in z>6 galaxies we suggest that CIII] is likely to provide our best probe of early star forming galaxies with ground-based spectrographs and one of the most efficient means of confirming z>10 galaxies with the James Webb Space Telescope.Comment: 22 pages, 8 figures, accepted for publication in MNRA

    A Public Ks-selected Catalog in the COSMOS/UltraVISTA Field: Photometry, Photometric Redshifts and Stellar Population Parameters

    Full text link
    We present a catalog covering 1.62 deg^2 of the COSMOS/UltraVISTA field with PSF-matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15um - 24um including the available GALEX, Subaru, CFHT, VISTA and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA Ks band imaging that reaches a depth of K_{s,tot} = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z_phot) for all galaxies computed with the EAZY code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z ~ 1.5 the z_phot are accurate to dz/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z_phot also show good agreement with the z_phot from the NEWFIRM Medium Band Survey (NMBS) out to z ~ 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U-V and V-J colors, L_2800 and L_IR. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z ~ 2. Star-forming galaxies also obey a star forming "main sequence" out to z ~ 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA Ks-selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z ~ 3 - 4.Comment: 20 pages, 14 figures. Accepted to the ApJSS. Catalog data products available for download here: http://www.strw.leidenuniv.nl/galaxyevolution/ULTRAVISTA

    Caught in the act: cluster 'k+a' galaxies as a link between spirals and S0s

    Get PDF
    We use integral field spectroscopy of 13 disc galaxies in the cluster AC114 at z ∼ 0.31 in an attempt to disentangle the physical processes responsible for the transformation of spiral galaxies in clusters. Our sample is selected to display a dominant young stellar population, as indicated by strong Hδ absorption lines in their integrated spectra. Most of our galaxies lack the [O ii]λ3727 emission line, and hence ongoing star formation. They therefore possess ‘k+a’ spectra, indicative of a recent truncation of star formation, possibly preceded by a starburst. Discy ‘k+a’ galaxies are a promising candidate for the intermediate stage of the transformation from star-forming spiral galaxies to passive S0s. Our observations allow us to study the spatial distributions and the kinematics of the different stellar populations within the galaxies. We used three different indicators to evaluate the presence of a young population: the equivalent width of Hδ, the luminosity-weighted fraction of A stars, and the fraction of the galaxy light attributable to simple stellar populations with ages between 0.5 and 1.5 Gyr. We find a mixture of behaviours, but are able to show that in most of the galaxies the last episode of star formation occurred in an extended disc, similar to preceding generations of stars, though somewhat more centrally concentrated. We thus exclude nuclear starbursts and violent gravitational interactions as causes of the star formation truncation. Gentler mechanisms, such as ram-pressure stripping or weak galaxy–galaxy interactions, appear to be responsible for ending star formation in these intermediate-redshift cluster disc galaxies

    Stellar mass functions of galaxies at 4<z<7 from an IRAC-selected sample in COSMOS/UltraVISTA: limits on the abundance of very massive galaxies

    Get PDF
    We build a Spitzer IRAC complete catalog of objects, obtained by complementing the KsK_\mathrm{s}-band selected UltraVISTA catalog with objects detected in IRAC only. With the aim of identifying massive (i.e., log(M/M)>11\log(M_*/M_\odot)>11) galaxies at 4<z<74<z<7, we consider the systematic effects on the measured photometric redshifts from the introduction of an old and dusty SED template and from the introduction of a bayesian prior taking into account the brightness of the objects, as well as the systematic effects from different star formation histories (SFHs) and from nebular emission lines in the recovery of stellar population parameters. We show that our results are most affected by the bayesian luminosity prior, while nebular emission lines and SFHs only introduce a small dispersion in the measurements. Specifically, the number of 4<z<74<z<7 galaxies ranges from 52 to 382 depending on the adopted configuration. Using these results we investigate, for the first time, the evolution of the massive end of the stellar mass functions (SMFs) at 4<z<74<z<7. Given the rarity of very massive galaxies in the early universe, major contributions to the total error budget come from cosmic variance and poisson noise. The SMF obtained without the introduction of the bayesian luminosity prior does not show any evolution from z6.5z\sim6.5 to z3.5z\sim 3.5, implying that massive galaxies could already be present when the Universe was 0.9\sim0.9~Gyr old. However, the introduction of the bayesian luminosity prior reduces the number of z>4z>4 galaxies with best fit masses log(M/M)>11\log(M_*/M_\odot)>11 by 83%, implying a rapid growth of very massive galaxies in the first 1.5 Gyr of cosmic history. From the stellar-mass complete sample, we identify one candidate of a very massive (log(M/M)11.5\log(M_*/M_\odot)\sim11.5), quiescent galaxy at z5.4z\sim5.4, with MIPS 24μ24\mum detection suggesting the presence of a powerful obscured AGN.Comment: 23 pages, 18 figures. ApJ accepte
    corecore