634 research outputs found

    Generation of Choline for Acetylcholine Synthesis by Phospholipase D Isoforms

    Get PDF
    DEDICATION: This article is dedicated to the memory of Sue Kim Hanson, a graduate student in the department of Pathology and Laboratory Medicine at Boston University School of Medicine, who perished in the terrorist attacks of September 11, 2001. BACKGROUND: In cholinergic neurons, the hydrolysis of phosphatidylcholine (PC) by a phospholipase D (PLD)-type enzyme generates some of the precursor choline used for the synthesis of the neurotransmitter acetylcholine (ACh). We sought to determine the molecular identity of the relevant PLD using murine basal forebrain cholinergic SN56 cells in which the expression and activity of the two PLD isoforms, PLD1 and PLD2, were experimentally modified. ACh levels were examined in cells incubated in a choline-free medium, to ensure that their ACh was synthesized entirely from intracellular choline. RESULTS: PLD2, but not PLD1, mRNA and protein were detected in these cells and endogenous PLD activity and ACh synthesis were stimulated by phorbol 12-myristate 13-acetate (PMA). Introduction of a PLD2 antisense oligonucleotide into the cells reduced PLD2 mRNA and protein expression by approximately 30%. The PLD2 antisense oligomer similarly reduced basal- and PMAstimulated PLD activity and ACh levels. Overexpression of mouse PLD2 by transient transfection increased basal- (by 74%) and PMA-stimulated (by 3.2-fold) PLD activity. Moreover, PLD2 transfection increased ACh levels by 26% in the absence of PMA and by 2.1-fold in the presence of PMA. Overexpression of human PLD1 by transient transfection increased PLD activity by 4.6-fold and ACh synthesis by 2.3-fold in the presence of PMA as compared to controls. C: These data identify PLD2 as the endogenous enzyme that hydrolyzes PC to generate choline for ACh synthesis in cholinergic cells, and indicate that in a model system choline generated by PLD1 may also be used for this purpose.National Institute on Aging (AG09525

    Modulation of cholinergic locus expression by glucocorticoids and retinoic acid is cell-type specific

    Get PDF
    AbstractModulation of mRNA expression of choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) by the glucocorticoid dexamethasone and by retinoic acid was examined in two neuronal cell lines: basal forebrain-derived SN56 and pheochromocytoma PC12. Dexamethasone up-regulated ChAT and VAChT in SN56 cells, while it had inhibitory effects on these genes in PC12 cells. Retinoic acid stimulated the cholinergic markers in both cell types, but in SN56 cells its effect was partially additive with that of dexamethasone, whereas it was much smaller and abrogated by dexamethasone in PC12 cells. Acetylcholine content correlated with these mRNA changes. The presence of a glucocorticoid response element consensus sequence in the VAChT/ChAT gene locus suggests direct transcriptional regulation by glucocorticoids

    Age and geochemistry of the mafic sills, ODP site 1276, Newfoundland margin

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemical Geology 235 (2006): 222-237, doi:10.1016/j.chemgeo.2006.07.001.Site 1276, Leg 210 of the Ocean Drilling Program, was located on the Newfoundland margin in seismically-defined ~128 Ma “transitional” crust just west of presumed oceanic crust, and the M3 magnetic anomaly. The goal of drilling on this non-volcanic margin was to study the rifting, nature of basement, and post-rift sedimentation in the Newfoundland-Iberia rift. Drilling of this 1739m hole was terminated 90-160 meters above basement, in the lower of a doublet of alkaline diabase sills. We have carried out geochemical studies of the sill complex, in the hopes that they will provide proxy information regarding the nature of the underlying basement. Excellent 40Ar/39Ar plateau ages were obtained for the two sills: upper sill ~105.3 Ma; lower sill ~97.8 Ma. Thus the sills are substantially younger than the presumed age of the seafloor at site 1276 (~128 Ma), and were intruded beneath substantial sediment overburden (250 m for the upper, older sill, and 575 m for the lower younger sill). While some of the geochemistry of the sills has been compromised by alteration, the “immobile” trace elements show these sills to be hawaiites, differentiated from an enriched alkaline or basanitic parentage. Sr, Nd and Pb isotopes are suggestive of an enriched hotspot/plume mantle source, with a possible “added” component of continental material. These sills unequivocally were not derived from typical MORB (asthenospheric) upper mantle.Funding for this research was provided by JOI/USSSP 261855 and NSF-EAR0509891

    Surface expression and limited proteolysis of ADAM10 are increased by a dominant negative inhibitor of dynamin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The amyloid precursor protein (APP) is cleaved by β- and γ-secretases to generate toxic amyloid β (Aβ) peptides. Alternatively, <it>α</it>-secretases cleave APP within the Aβ domain, precluding Aβ formation and releasing the soluble ectodomain, sAPPα. We previously showed that inhibition of the GTPase dynamin reduced APP internalization and increased release of sAPPα, apparently by prolonging the interaction between APP and α-secretases at the plasma membrane. This was accompanied by a reduction in Aβ generation. In the present study, we investigated whether surface expression of the α-secretase ADAM (a disintegrin and metalloprotease)10 is also regulated by dynamin-dependent endocytosis.</p> <p>Results</p> <p>Transfection of human embryonic kidney (HEK) cells stably expressing M3 muscarinic receptors with a dominant negative dynamin I mutant (dyn I K44A), increased surface expression of both immature, and mature, catalytically active forms of co-expressed ADAM10. Surface levels of ADAM10 were unaffected by activation of protein kinase C (PKC) or M3 receptors, indicating that receptor-coupled shedding of the ADAM substrate APP is unlikely to be mediated by inhibition of ADAM10 endocytosis in this cell line. Dyn I K44A strongly increased the formation of a C-terminal fragment of ADAM10, consistent with earlier reports that the ADAM10 ectodomain is itself a target for sheddases. The abundance of this fragment was increased in the presence of a γ-secretase inhibitor, but was not affected by M3 receptor activation. The dynamin mutant did not affect the distribution of ADAM10 and its C-terminal fragment between raft and non-raft membrane compartments.</p> <p>Conclusions</p> <p>Surface expression and limited proteolysis of ADAM10 are regulated by dynamin-dependent endocytosis, but are unaffected by activation of signaling pathways that upregulate shedding of ADAM substrates such as APP. Modulation of ADAM10 internalization could affect cellular behavior in two ways: by altering the putative signaling activity of the ADAM10 C-terminal fragment, and by regulating the biological function of ADAM10 substrates such as APP and N-cadherin.</p

    Geodynamic implications for zonal and meridional isotopic patterns across the northern Lau and North Fiji Basins

    Get PDF
    We present new Sr-Nd-Pb-Hf-He isotopic data for sixty-five volcanic samples from the northern Lau and North Fiji Basin. This includes forty-seven lavas obtained from forty dredge sites spanning an east-west transect across the Lau and North Fiji basins, ten ocean island basalt (OIB)-type lavas collected from seven Fijian islands, and eight OIB lavas sampled on Rotuma. For the first time we are able to map clear north-south and east-west geochemical gradients in 87Sr/86Sr across the northern Lau and North Fiji Basins: lavas with the most geochemically enriched radiogenic isotopic signatures are located in the northeast Lau Basin, while signatures of geochemical enrichment are diminished to the south and west away from the Samoan hotspot. Based on these geochemical patterns and plate reconstructions of the region, these observations are best explained by the addition of Samoa, Rurutu, and Rarotonga hotspot material over the past 4 Ma. We suggest that underplated Samoan material has been advected into the Lau Basin over the past ∼4 Ma. As the slab migrated west (and toward the Samoan plume) via rollback over time, younger and hotter (and therefore less viscous) underplated Samoan plume material was entrained. Thus, entrainment efficiency of underplated plume material was enhanced, and Samoan plume signatures in the Lau Basin became stronger as the trench approached the Samoan hotspot. The addition of subducted volcanoes to the Cook-Austral Volcanic Lineament material, first from the Rarotonga hotspot, then followed by the Rurutu hotspot, contributes to the extreme geochemical signatures observed in the northeast Lau Basin

    Regional Pliocene exhumation of the Lesser Himalaya in the Indus drainage

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clift, P. D., Zhou, P., Stockli, D. F., & Blusztajn, J. Regional Pliocene exhumation of the Lesser Himalaya in the Indus drainage. Solid Earth, 10(3), (2019): 647-661, doi:10.5194/se-10-647-2019.New bulk sediment Sr and Nd isotope data, coupled with U–Pb dating of detrital zircon grains from sediment cored by the International Ocean Discovery Program in the Arabian Sea, allow the reconstruction of erosion in the Indus catchment since ∼17 Ma. Increasing εNd values from 17 to 9.5 Ma imply relatively more erosion from the Karakoram and Kohistan, likely linked to slip on the Karakoram Fault and compression in the southern and eastern Karakoram. After a period of relative stability from 9.5 to 5.7 Ma, there is a long-term decrease in εNd values that corresponds with increasing relative abundance of >300 Ma zircon grains that are most common in Himalayan bedrocks. The continuous presence of abundant Himalayan zircons precludes large-scale drainage capture as the cause of decreasing εNd values in the submarine fan. Although the initial increase in Lesser Himalaya-derived 1500–2300 Ma zircons after 8.3 Ma is consistent with earlier records from the foreland basin, the much greater rise after 1.9 Ma has not previously been recognized and suggests that widespread unroofing of the Crystalline Lesser Himalaya and to a lesser extent Nanga Parbat did not occur until after 1.9 Ma. Because regional erosion increased in the Pleistocene compared to the Pliocene, the relative increase in erosion from the Lesser Himalaya does not reflect slowing erosion in the Karakoram and Greater Himalaya. No simple links can be made between erosion and the development of the South Asian Monsoon, implying a largely tectonic control on Lesser Himalayan unroofing.This research has been supported by the USSSP (grant no. 355-001)

    Developmental Periods of Choline Sensitivity Provide an Ontogenetic Mechanism for Regulating Memory Capacity and Age-Related Dementia

    Get PDF
    In order to determine brain and behavioral sensitivity of nutrients that may serve as inductive signals during early development, we altered choline availability to rats during 7 time frames spanning embryonic day (ED) 6 through postnatal day (PD) 75 and examined spatial memory ability in the perinatally-treated adults. Two sensitive periods were identified, ED 12–17 and PD 16–30, during which choline supplementation facilitated spatial memory and produced increases in dendritic spine density in CA1 and dentate gyrus (DG) regions of the hippocampus while also changing the dendritic fields of DG granule cells. Moreover, choline supplementation during ED 12–17 only, prevented the memory decline normally observed in aged rats. These behavioral changes were strongly correlated with the acetylcholine (ACh) content of hippocampal slices following stimulated release. Our data demonstrate that the availability of choline during critical periods of brain development influences cognitive performance in adulthood and old age, and emphasize the importance of perinatal nutrition for successful cognitive aging

    Thallium as a tracer of fluid–rock interaction in the shallow Mariana forearc

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 430 (2015): 416-426, doi:10.1016/j.epsl.2015.09.001.Fluids driven off the subducting Pacific plate infiltrate the shallow Mariana 26 forearc and lead to extensive serpentinization of mantle peridotite. However, the sources, pathways, and chemical modifications of ascending, slab-derived fluids remain poorly constrained and controversial. In this study, we use thallium (Tl) concentrations and isotopic ratios of serpentinized peridotite and rodingitized diabase from the South Chamorro and Conical Seamounts to discriminate between potential fluid sources with distinct Tl isotope compositions. Serpentinite samples from the Mariana forearc all display ε205Tl > - 0.5 (where ε205Tl = 10,000 x (205Tl/203Tlsample-205Tl/203TlSRM 997)/(205Tl/203TlSRM 997)), which is significantly enriched in 205Tl compared to the normal mantle (ε205Tl = -2). Given that high temperature hydrothermal processes do not impart significant Tl isotope fractionation, the isotope compositions of the serpentinites must reflect that of the serpentinizing fluid. Pelagic sediments are the only known slab component that consistently display ε205Tl > -0.5 and, therefore, we interpret the heavy Tl isotope signatures as signifying that the serpentinizing fluids were derived from subducting pelagic sediments. A rodingitized diabase from Conical Seamount was found to have an ε205Tl of 0.8, suggesting that sediment-sourced serpentinization fluids could also affect diabase and other mafic lithologies in the shallow Mariana forearc. Forearc rodingitization of diabase led to a strong depletion in Tl content and a virtually complete loss of K, Na and Rb. The chemical composition of hybrid fluids resulting from serpentinization of harzburgite with concomitant rodingitization of diabase can be highly alkaline, depleted in Si, yet enriched in Ca, Na, K, and Rb, which is consistent with the composition of fluids emanating from mud volcanoes in the Mariana forearc. Our study suggests that fluid-rock interactions between sedimentary, mafic, and ultramafic lithologies are strongly interconnected even in the shallowest parts of subduction zones. We conclude that transfer of fluids and dissolved elements at temperatures and pressures below 400°C and 1GPa, respectively, must be taken into account when elemental budgets and mass transfer between the subducting plate, the forearc, the deep mantle and the ocean are evaluated.This study was funded by NSF grants EAR-1119373 and -1427310 to SGN, NSF grant OCE-1059534 to FK and a grant from the WHOI Deep Ocean Exploration Institute to FK and SGN

    1,2-sn-Diacylglycerol accumulates in choline-deficient liver. A possible mechanism of hepatic carcinogenesis via alteration in protein kinase C activity?

    Get PDF
    Choline deficiency is associated with triacylglycerol accumulation in the liver, and is the only nutritional state known to trigger hepatic cancer spontaneously. In two different experiments, rats were pair-fed for 6 weeks with control (0.2% choline), or choline-deficient (CD) (0.002% choline) diets. Hepatic choline and phosphocholine declined in CD animals to 54% and 16% of control levels, respectively. In control livers, 1,2-sn-diacylglycerol (1,2-sn-DAG) concentration was (in nmol/g wet wt) 144 (± 25; mean ± SE); while in CD livers it was 792 (± 140) in the first experiment. In the second experiment the values were 375 (± 26) and 1147 (± 74), respectively. 1,2-sn-DAG, a precursor of triacylglycerol, is an endogenous activator of protein kinase C (PKC). PKC is the presumed site of action of the tumor-promoting phorbol esters. We suggest that the 1,2-sn-DAG accumulating in CD liver could bind PKC, altering its activity, and thus contribute to the carcinogenic effect of CD diets

    Antarctic intermediate water circulation in the South Atlantic over the past 25,000years

    Get PDF
    Antarctic Intermediate Water is an essential limb of the Atlantic meridional overturning circulation that redistributes heat and nutrients within the Atlantic Ocean. Existing reconstructions have yielded conflicting results on the history of Antarctic Intermediate Water penetration into the Atlantic across the most recent glacial termination. In this study we present leachate, foraminiferal, and detrital neodymium isotope data from three intermediate-depth cores collected from the southern Brazil margin in the South Atlantic covering the past 25kyr. These results reveal that strong chemical leaching following decarbonation does not extract past seawater neodymium composition in this location. The new foraminiferal records reveal no changes in seawater Nd isotopes during abrupt Northern Hemisphere cold events at these sites. We therefore conclude that there is no evidence for greater incursion of Antarctic Intermediate Water into the South Atlantic during either the Younger Dryas or Heinrich Stadial 1. We do, however, observe more radiogenic Nd isotope values in the intermediate-depth South Atlantic during the mid-Holocene. This radiogenic excursion coincides with evidence for a southward shift in the Southern Hemisphere westerlies that may have resulted in a greater entrainment of radiogenic Pacific-sourced water during intermediate water production in the Atlantic sector of the Southern Ocean. Our intermediate-depth records show similar values to a deglacial foraminiferal Nd isotope record from the deep South Atlantic during the Younger Dryas but are clearly distinct during the Last Glacial Maximum and Heinrich Stadial 1, demonstrating that the South Atlantic remained chemically stratified during Heinrich Stadial 1.Natural Environment Research Council (Grant IDs: NE/K005235/1, NE/F006047/1), National Science Foundation (Grant ID: OCE -1335191), Rutherford Memorial Scholarship, DFG Research Center/Cluster of Excellence “The Ocean in the Earth System”, FAPESP (Grant ID: 2012/17517-3), CAPES (Grant IDs: 1976/2014, 564/2015
    corecore