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Abstract - Fluids driven off the subducting Pacific plate infiltrate the shallow Mariana forearc and lead to 26 

extensive serpentinization of mantle peridotite. However, the sources, pathways, and chemical 27 

modifications of ascending, slab-derived fluids remain poorly constrained and controversial. In this study, 28 

we use thallium (Tl) concentrations and isotopic ratios of serpentinized peridotite and rodingitized 29 

diabase from the South Chamorro and Conical Seamounts to discriminate between potential fluid sources 30 

with distinct Tl isotope compositions. Serpentinite samples from the Mariana forearc all display ε205Tl > -31 

0.5 (where ε205Tl = 10,000 x (205Tl/203Tlsample-205Tl/203TlSRM 997)/(205Tl/203TlSRM 997)), which is significantly 32 

enriched in 205Tl compared to the normal mantle (ε205Tl = -2). Given that high temperature hydrothermal 33 

processes do not impart significant Tl isotope fractionation, the isotope compositions of the serpentinites 34 

must reflect that of the serpentinizing fluid. Pelagic sediments are the only known slab component that 35 

consistently display ε205Tl > -0.5 and, therefore, we interpret the heavy Tl isotope signatures as signifying 36 

that the serpentinizing fluids were derived from subducting pelagic sediments. A rodingitized diabase 37 

from Conical Seamount was found to have an ε205Tl of 0.8, suggesting that sediment-sourced 38 

serpentinization fluids could also affect diabase and other mafic lithologies in the shallow Mariana 39 

forearc. Forearc rodingitization of diabase led to a strong depletion in Tl content and a virtually complete 40 

loss of K, Na and Rb. The chemical composition of hybrid fluids resulting from serpentinization of 41 

harzburgite with concomitant rodingitization of diabase can be highly alkaline, depleted in Si, yet 42 

enriched in Ca, Na, K, and Rb, which is consistent with the composition of fluids emanating from mud 43 

volcanoes in the Mariana forearc. Our study suggests that fluid-rock interactions between sedimentary, 44 

mafic, and ultramafic lithologies are strongly interconnected even in the shallowest parts of subduction 45 

zones. We conclude that transfer of fluids and dissolved elements at temperatures and pressures below 46 

400°C and 1GPa, respectively, must be taken into account when elemental budgets and mass transfer 47 

between the subducting plate, the forearc, the deep mantle and the ocean are evaluated. 48 

 49 

  50 
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1. Introduction 51 

Oceanic plate subduction releases aqueous fluids into the overriding mantle wedge. Mantle rocks 52 

(peridotite, pyroxenite) are unstable in the shallow forearc in the presence of fluids at temperatures lower 53 

than ca. 560°C and will undergo hydration and oxidation reactions that are collectively known as 54 

serpentinization. Evidence for active serpentinization in the forearc mantle is found at the Mariana 55 

forearc, where serpentinite mud, which consists of serpentinite particles suspended in upwelling aqueous 56 

fluid, rises along extensional faults and extrudes at the seafloor (Fryer et al., 1985; Mottl et al., 2004). 57 

Over time, these mud flows form large serpentinite mud volcanoes that reach diameters and heights of 55 58 

km and 2.5 km, respectively (Fryer, 2012). The extruding mud carries large clasts (up to >1m in diameter 59 

(Salisbury et al., 2002)) of partially to completely serpentinized forearc peridotite and a variety of other, 60 

less abundant lithologies, including metamorphosed island arc basalt, boninite, mid-ocean ridge basalt, 61 

and metamorphic schists (Fryer et al., 2006; Fryer et al., 1999; Johnson and Fryer, 1990; Pabst et al., 62 

2012). Petrologic studies of minerals in metabasites (lawsonite, aragonite, sodic pyroxene and amphibole) 63 

suggest that these samples were metamorphosed under blueschist facies conditions at 150-250 °C and 5-6 64 

kbar corresponding to 16-20 km depth and may originate from multiple sources (Maekawa et al., 1993). 65 

Since lithologies from the slab-mantle interface (décollement) and slab fluids are otherwise inaccessible 66 

by current in situ sampling techniques (drilling), serpentinite mud volcanism provides the best available 67 

means to better constrain alteration processes, fluid sources, and pathways within the shallowest portion 68 

of the Mariana subduction zone (e.g. Fryer, 2012). 69 

The juxtaposition of subducting altered oceanic crust, sediment, and forearc mantle peridotite 70 

creates chemical disequilibria. Fluids driven off the subducting plate can mediate mass transfer through 71 

metasomatism along geochemical potential gradients and promote dissolution-precipitation reactions that 72 

alter the composition and mechanical properties of rocks. These rocks are either dragged deeper into the 73 

subduction zone, where they undergo higher grade metamorphism and possible partial melting, or they 74 

are entrained in buoyantly rising serpentinite mud that brings them back towards the surface (Fryer, 75 

2012).  76 
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Serpentinization and chemical exchange reactions with mafic and sedimentary lithologies at or near 77 

the décollement can alter the composition of the fluids traversing this region. These fluids may then 78 

migrate upwards along extensional faults and, ultimately, exit the seafloor into the ocean. Upwelling 79 

fluids sampled at the South Chamorro and Conical seamounts have low chlorinities (260-542 mmol/kg) 80 

and high alkalitinies (up to 62 mEq/kg, Mottl et al., 2004). Relative to seawater, these fluids are depleted 81 

in dissolved Mg, Li, Sr and Ca, but enriched in K, Rb, Cs, and B (Mottl et al., 2004).  The high pH (>12) 82 

and low concentrations of dissolved silica measured in upwelling fluids (Mottl et al., 2004) are consistent 83 

with buffering by serpentine, brucite and diopside during serpentinization at temperatures lower than 84 

300°C (Klein et al., 2013). However, the upwelling fluid’s enrichment in alkali metals relative to seawater 85 

cannot be explained by serpentinization of alkali-poor mantle peridotite alone, which indicates that 86 

additional processes affected these fluids before they were expelled at the seafloor. The lower chlorinity 87 

of the emitted fluids has been attributed to dehydration reactions within the subducting plate, as opposed 88 

to compaction of sediments, which is thought to produce fluids with chlorinities similar to that of 89 

seawater (Mottl et al., 2004). However, the source of the fluid responsible for forearc serpentinization 90 

remains controversial. For example, chlorine isotopes of serpentinite muds and clasts from Conical, South 91 

Chamorro and Torishima seamounts suggest that dehydration of subducted oceanic serpentinite is one 92 

potential fluid source (Barnes et al., 2008). Conversely, evidence from O and H isotopes in serpentine 93 

samples was inferred to suggest that seawater and altered oceanic crust are likely fluid sources (Sakai et 94 

al., 1990).  In contrast to both prior hypotheses, it was argued that subducted sediments are the fluid 95 

source for serpentinization of the forearc mantle (Alt and Shanks, 2006), which was based primarily on O 96 

and H isotopes in serpentinites from South Chamorro and Conical seamounts. The main difficulty in these 97 

previous studies was that 1) the temperature of fluid release imparts a strong influence on its O and H 98 

isotopic characteristic, 2) the isotopic endmembers for the different fluid sources may overlap and 3) a 99 

significant spread in the serpentinite isotopic data made it difficult to pinpoint the exact fluid source.  100 

The thallium (Tl) isotopic composition of the Earth’s mantle and unaltered oceanic basement is 101 

homogenous (ε205Tl = -2) and differs significantly from that of isotopically heavier pelagic sediments 102 
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(ε205Tl = 0 to 5, n = 5) and isotopically lighter low-temperature altered oceanic crust (ε205Tl = -15 to -2, n 103 

= 30) (Fig. 1). In addition, the concentration of Tl found in sediments and low-temperature (low-T) 104 

altered oceanic crust is up to four orders of magnitude higher than that found in the mantle and unaltered 105 

oceanic crust (Coggon et al., 2014; Heinrichs et al., 1980; Nielsen et al., 2006c; Nielsen et al., 2014; 106 

Rehkämper et al., 2004; Teagle et al., 1996). Thus, if serpentinizing fluids are derived from either pelagic 107 

sediments or low-T altered oceanic crust, then Tl isotopes should be ideally suited to distinguish fluids 108 

derived from devolatilization of either source during subduction. Here we use Tl concentrations and 109 

isotope ratios of samples recovered during ODP Legs 125 and 195 from the Conical and South Chamorro 110 

seamounts as a tracer of fluid sources and metasomatic mass transfer in the shallow Mariana forearc.  111 

 112 

2. Thallium isotopic background 113 

Thallium is a trace metal that displays both lithophile and chalcophile behavior.  In geochemistry, it 114 

is often grouped with the alkali elements K, Rb, and Cs due to their similar ionic radii and charge 115 

(Heinrichs et al., 1980; Shannon, 1976; Shaw, 1952). Thallium is incompatible during mantle melting and 116 

is enriched in the continental crust (~300-500 ng/g) relative to the mantle (~0.5-2 ng/g) (Heinrichs et al., 117 

1980; Nielsen et al., 2005; Nielsen et al., 2014; Wedepohl, 1995). Adsorption leads to Tl enrichment in 118 

pelagic metalliferous sediments (~750-3500 ng/g) and deposition of alteration minerals from mobile fluid 119 

phases increases Tl concentrations in low temperature hydrothermally altered seafloor basalts (~30-1000 120 

ng/g) (Coggon et al., 2014; Nielsen et al., 2006c; Prytulak et al., 2013; Rehkämper et al., 2004). 121 

Thallium has two stable isotopes with masses 203 and 205. Thallium isotope compositions are 122 

reported relative to the NIST SRM 997 Tl standard in parts per 10,000 such that 123 

ε205Tl = 10,000 x (205Tl/203Tlsample-205Tl/203TlSRM 997)/(205Tl/203TlSRM 997)              (1) 124 

The small relative mass difference between the two isotopes prevents extensive isotopic 125 

fractionation except in select environments where nuclear volume isotope fractionation occurs during 126 

chemical reactions primarily involving both oxidation states of Tl, +1 and +3 (Nielsen and Rehkämper, 127 
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2011; Schauble, 2007). However, trivalent Tl is not thermodynamically stable in igneous environments, 128 

and Tl dissolved in seawater is almost exclusively univalent (Byrne, 2002; Nielsen et al., 2009a). The 129 

uniform Tl redox state of the mantle renders the average upper mantle homogenous with respect to Tl 130 

isotopes (ε205Tl  = -2 ± 0.5) with no significant isotope fractionation expected during melting or fractional 131 

crystallization (Schauble, 2007). In contrast, hydrothermally altered oceanic crust and metalliferous 132 

marine sediments are highly variable with respect to Tl isotope ratios and concentrations. 133 

Enrichment of Tl in marine sediments is primarily due to adsorption onto authigenic manganese 134 

(Mn) oxides (Hein et al., 2000; Nielsen et al., 2013; Rehkämper et al., 2004; Rehkämper et al., 2002) that 135 

precipitate ubiquitously from oxic seawater onto sedimentary particles. Mn oxides preferentially take up 136 

205Tl with a fractionation factor of up to α = 1.002 (Nielsen et al., 2013; Rehkämper et al., 2004; 137 

Rehkämper et al., 2002), although such high fractionation factors are only observed for pure hydrogenetic 138 

ferro-manganese crusts that can have isotope compositions as high as ε205Tl ~ +15 (Rehkämper et al., 139 

2004). This adsorption process is responsible for heavy Tl isotope compositions detected in pelagic clays 140 

(Rehkämper et al., 2004).  141 

In the basaltic oceanic crust, Tl enrichment occurs during the circulation of seawater at low 142 

temperatures (<100°C). The thallium enrichment may be related to biologically mediated pyrite 143 

precipitation (Coggon et al., 2014) or alternatively Tl partitions from circulating seawater into alkali-rich 144 

clay minerals that also form during low-T alteration (Nielsen et al., 2006c). Analysis of Tl concentrations 145 

and isotopes in low-T altered crust from IODP Hole U1301B, Deep Sea Drilling Project (DSDP) Hole 146 

417D and DSDP/Ocean Drilling Program (ODP) Hole 504B showed high Tl concentrations (30-1000 147 

ng/g) and light Tl isotope ratios (down to ε205Tl ~ -15; (Coggon et al., 2014; Nielsen et al., 2006c)).   148 

In high-temperature hydrothermal systems, Tl preferentially partitions into the fluid phase over the 149 

rock during reaction. Typical MORB has a Tl abundance of about 10 ng/g (Nielsen et al., 2014), while 150 

seawater concentrations are ~10-15 pg/g Tl (Flegal and Patterson, 1985; Nielsen et al., 2006c), and black 151 

smoker type hydrothermal vent fluids contain around 5 ng/g (Metz and Trefry, 2000; Nielsen et al., 152 
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2006c). The ~500-fold disparity in Tl concentration between seawater entering the hydrothermal system 153 

and the hydrothermal vent fluid discharged into the ocean requires that virtually all of the aqueous Tl 154 

present was derived from water-rock interaction. 155 

The sheeted dike portion of the oceanic crust has low Tl concentrations (<1 ng/g; (Nielsen et al., 156 

2006c)) that reflects the leaching by high temperature hydrothermal fluids (200-400°C) near the ridge 157 

axis. This removal of Tl does not result in isotope fractionation and the sheeted dikes have a ε205Tl similar 158 

to MORB glass (ε205Tl ~ -2 ± 0.5; (Nielsen et al., 2006b; Nielsen et al., 2006c)).  Black smoker fluids also 159 

display Tl isotope compositions that are identical to MORB and the upper mantle, which shows that there 160 

is no detectable isotope fractionation between high-T fluids and the altered basalts that reacted with these 161 

fluids (Nielsen et al., 2006c). This relationship is consistent with theoretical calculations of Tl isotope 162 

fractionation, which predict negligible effects at T>200°C, especially at reducing conditions typical for 163 

high temperature hydrothermal alteration and serpentinization processes where dissolved trivalent Tl is 164 

not stable (Nielsen et al., 2009a; Schauble, 2007). Serpentinization in the forearc occurs at temperatures 165 

comparable to those found in recharge zones and cooler parts of reaction zones of high-temperature black 166 

smoker type hydrothermal systems (200-400°C), which may suggest that Tl will partition between fluid 167 

and rock similarly in both settings. This inference is corroborated by analyses of serpentinites from both 168 

forearc and mid-ocean ridge settings where Tl concentrations are similar to the sheeted dike complex 169 

(Kodolanyi et al., 2012), which shows that Tl partitions similarly between rock and fluid in both types of 170 

high-temperature hydrothermal systems. Compared to basalt alteration at mid-ocean ridges, however, 171 

forearc serpentinization is characterized by some important differences. First, unaltered mantle rocks 172 

contain more than an order of magnitude less Tl than MORB because Tl is strongly incompatible during 173 

mantle melting (Nielsen et al., 2014). Moreover, the composition of the original serpentinizing fluid 174 

before interaction with mantle rocks is very different from seawater because it is likely derived from 175 

subducting sediments and/or altered oceanic basement (Alt and Shanks, 2006; Mottl et al., 2004; Sakai et 176 

al., 1990).  177 
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Although the exact concentration of Tl in the serpentinizing fluid is unknown, it is almost certainly 178 

higher than seawater because it interacted with either basalt or sediment, which contain at least 1000 179 

times more Tl than seawater per unit volume, at temperatures above 150°C (Alt and Shanks, 2006; Mottl 180 

et al., 2004). Considering these differences, it appears likely that the slab-derived fluid dominates the total 181 

Tl budget of forearc serpentinization. This means that we would expect serpentinites to exhibit the Tl 182 

isotope composition of the fluids derived from the slab component that caused the serpentinization. 183 

  184 

3. Samples and methods 185 

3.1. Samples 186 

We investigated Tl isotopes and concentrations in nine partially to completely serpentinized 187 

peridotites and one rodingite from the ODP Holes 779A and 1200A. Thin section petrography revealed 188 

that all protoliths can be classified as harzburgite except the rodingite, which was likely diabase (Johnson, 189 

1992).  190 

In the serpentinites, all primary silicates are fractured with sub-grainsizes ranging between <50µm 191 

and several hundred µm. Olivine is partly to completely altered to serpentine (lizardite and minor 192 

chrysotile) > brucite > Ni-Fe sulfides / alloy > magnetite in mesh, hourglass and ribbon textures. All 193 

examined rocks are generally magnetite-poor. Only a few transgranular veins in samples 1200A-3R-1W, 194 

3-7cm, 1200A 11R-1W, 47-49cm, and 779A-35R-1W, 22-24cm contain minor (maximum a few percent) 195 

amounts of magnetite (Fig. 2). Orthopyroxene is partly to completely altered to lizardite and minor 196 

chlorite in bastite texture. Bastite contains neither talc nor magnetite. One sample from Conical seamount 197 

(779A-35R-1W, 22-24cm) contains antigorite-brucite assemblages interpreted to have formed at the 198 

expense of lizardite during prograde metamorphism. In contrast to the brown, Fe-bearing brucite in mesh 199 

texture, the brucite associated with antigorite in interpenetrating texture is colorless and Fe-poor (Murata 200 

et al., 2009). All of the samples examined in this study show several vein generations, with earlier veins 201 

consisting chiefly of lizardite and late veins consisting of chrysotile (Kahl et al., 2015). Chrysotile veins 202 

cross-cut antigorite blades in sample 779A-35R-1W, 22-24cm, suggesting these veins postdate prograde 203 
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metamorphism. Iron-rich brucite and iowaite precipitated late in veins and mesh texture (Fig. 2), which 204 

led to a brownish overprint in several clasts (Kahl et al., 2015). Clinopyroxene (diopside) is the least 205 

abundant primary silicate in all serpentinite samples examined in this study. Where present, it occurs as 206 

subhedral crystals, as symplectite intergrown with Cr-spinel or as exsolution lamellae in orthopyroxene. 207 

In most instances, clinopyroxene has remained largely unaltered. In some completely altered 208 

orthopyroxene grains, the clinopyroxene exsolution lamellae appear to have been altered to chlorite. 209 

Chromium spinel is fractured and, in many instances, shows thin alteration rims consisting of ferri-210 

chromite.  211 

One rodingite recovered from Conical seamount was analyzed in this study. Johnson (1992) 212 

performed major and trace element analyses of 6 subsamples from the same interval and found it to be 213 

homogenous. Consistent with previous findings (Johnson, 1992), the sample analyzed here consists of 214 

primary and secondary clinopyroxene and andradite-rich hydro-garnet, minor chlorite, pumpellyite, and 215 

traces of relict sphene (Fig. 2). We also analyzed one completely serpentinized peridotite from the Mid-216 

Atlantic Ridge Kane (MARK) Fracture Zone area, which was recovered during ODP Leg 153 (920B-217 

12R-2W, 140-143 cm). This particular sample consists chiefly of Fe-bearing serpentine (XMg ≈ 0.95) and 218 

brucite (XMg ≈ 0.90); It is rich in magnetite (6.15 wt%) and likely formed at temperatures ≥250°C (Klein 219 

et al., 2014). In addition, we analyzed one unaltered harzburgite xenolith from the Meerfelder Maar (Eifel 220 

Volcanic Field, Germany, see Klein et al., (2015) for detailed petrographic description and chemical 221 

analyses) in order to compare unaltered mantle peridotite and abyssal serpentinite with those from the 222 

Mariana forearc.  223 

 224 

3.2. Sample preparation 225 

All samples were cut into cm-sized pieces using a diamond saw blade and ca. 5-10g were powdered 226 

with a disc grinder in a tungsten carbide (WC) barrel. The WC barrel was cleaned with high purity quartz 227 

before and after each run, triple rinsed with deionized water and air dried to avoid cross-contamination. 228 

Contamination of Tl from the WC barrel is highly unlikely given that different samples (e.g. 920B-12R-229 
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2W, 140-143 cm and 10R-2W, 51-53cm) with very low Tl concentrations display Tl isotope 230 

compositions that are very different. Thus, any Tl contamination from the WC barrel must be 231 

significantly smaller than the 0.14 ng/g observed in 10R-2W, 51-53cm. Powdered samples (1 - 5 g) were 232 

dissolved in ~5ml/g of a 1:1 mixture of concentrated HF and HNO3 on a hotplate overnight. Following 233 

this, they were dried and fluxed several times with concentrated nitric acid and hydrochloric acid until the 234 

fluorides that formed during the first step could no longer be seen. After these steps, some samples still 235 

contained a minor amount of undissolved spinel. However, spinel does not contain detectable amounts of 236 

Tl (Nielsen et al., 2014) so these residues had no effect on our Tl isotope and concentration analyses. 237 

Following complete dissolution of fluorides, the samples were dissolved in ~1 M HCl and MQ water 238 

saturated in bromine was added to oxidize Tl to the trivalent oxidation state (Nielsen et al., 2004; 239 

Rehkämper and Halliday, 1999). A two-stage column chromatographic technique with anion-exchange 240 

resin was used to isolate Tl from rock samples (Nielsen et al., 2004; Nielsen et al., 2005). This procedure 241 

has been shown to produce quantitative yields for Tl (Nielsen et al., 2004; Nielsen et al., 2006a; 242 

Rehkämper et al., 2004). Total procedural Tl blanks during this study were <3pg, which is insignificant 243 

compared to the indigenous Tl processed for the samples. We processed >250pg Tl for all samples, with 244 

the majority containing >1ng. 245 

 246 

3.3. Determination of Tl isotope compositions and concentrations 247 

The Tl isotope compositions were determined at the WHOI Plasma Mass Spectrometry Facility 248 

using a Thermo Neptune multiple collector inductively coupled plasma-mass spectrometer (MC-ICPMS). 249 

Previously described techniques that utilize both external normalization to NIST SRM 981 Pb and 250 

standard-sample bracketing were applied for mass bias correction (Nielsen et al., 2004; Rehkämper and 251 

Halliday, 1999). Due to the quantitative yields of Tl from the column chemistry procedure, Tl 252 

concentrations could be determined by monitoring the 205Tl signal intensities of the samples during the 253 

isotopic measurements. A known quantity of NIST SRM 981 Pb was added to the sample Tl and the 254 

measured 205Tl/208Pb ratios were then converted directly into Tl abundances. Previous studies that utilized 255 
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the Nu Plasma MC-ICPMS applied a 5% correction that assumed Tl ionizes 5% more efficiently than Pb. 256 

However, we have not been able to verify this behavior for the Neptune and thus do not apply this 257 

correction here. The uncertainty on the Tl concentration measurements is likely on the order of ±10% 258 

(2sd) (Prytulak et al., 2013). Our new data for 10 separate digestions of the USGS reference basalt 259 

BHVO-1 (Table 1) exhibited [Tl] = 37 ± 4 ng/g (2sd), which is in good agreement with several previous 260 

studies that found values of 38 ± 4 ng/g (Prytulak et al., 2013) and 40 ± 5 ng/g (Makishima and 261 

Nakamura, 2006).  262 

The precision and accuracy of the Tl isotope measurements has been investigated in previous 263 

studies (Nielsen et al., 2004; Rehkämper and Halliday, 1999), even for samples with low abundances of 264 

Tl (Nielsen et al., 2006a). During the course of this study, we used the long-term reproducibility of 265 

BHVO-1 (Table 1) to assess our external error on unknown samples and found ε205Tl = -3.5 ± 0.5 (2sd). 266 

We apply this uncertainty to all measurements that were conducted using total Tl ion beams in excess of 267 

1.5 x 10-11 A, whereas samples with total Tl ion beams <0.7 x 10-11 A and between 0.7 and 1.5 x 10-11 A 268 

were assigned errors of ±1 and ±0.8 ε205Tl-units, respectively, in accordance with previous studies 269 

(Nielsen et al., 2007; Nielsen et al., 2009b). 270 

 271 

3.4. Other analytical work 272 

The major and trace element contents of whole rock samples (Table 2) were analyzed by XRF in 273 

the Peter Hooper GeoAnalytical Laboratory at Washington State University (Pullman, WA) using 274 

previously described methods (Johnson et al., 1997). Thin sections were examined using a petrographic 275 

microscope in transmitted and reflected light. Where minerals could not be unequivocally identified, thin 276 

sections were analyzed with a Horiba Labram HR confocal Raman spectrometer equipped with a 17 mW 277 

633 nm HeNe laser, a 25mW 473 nm diode-pumped solid state laser, an astigmatic flat field spectrograph 278 

with a focal length of 800 mm, and a multichannel air-cooled (-70 °C) CCD detector. Individual spectra 279 

were recorded using a 100x objective with a numerical aperture of 0.9. A grating with 600 grooves / mm 280 
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and a confocal hole diameter of 100 to 200 µm was chosen for most analyses. Spectra were collected for 281 

5 seconds with 3-5 accumulations between 100 cm-1 and 1300 cm-1 and for 20 seconds between 3500 cm-1 282 

and 3800 cm-1. Confocal Raman maps were collected with the 473 nm laser between 180 and 2200 cm-1 283 

with a 50x objective and a step size of 2µm. The Horiba SWIFT™ fast mapping option was employed 284 

and individual spectra were recorded for 0.8 seconds. 285 

 286 

4. Results 287 

Serpentinite samples from the Mariana forearc display a range of isotope compositions from ε205Tl  288 

= -0.5 to +1.8 (Table 3). Statistically, the samples can be divided into two groups (Student's T-test yields 289 

a probability of <0.02% that the two sample populations are from the same group): One that is 290 

isotopically heavier with ε205Tl = 1.3 ± 0.7 (2sd), and another isotopically lighter with ε205Tl = -0.3 ± 0.7 291 

(2sd). The rodingite sample from ODP Hole 779A, mainly composed of secondary diopside and hydro-292 

andradite, exhibits value most similar to the heavier serpentinites of ε205Tl = +0.8 ± 0.5. In contrast, one 293 

serpentinite sample from the Mid-Atlantic Ridge and an unaltered harzburgite from the Meerfelder Maar, 294 

Eifel Volcanic Field (Germany) have values within error of ε205Tl = -2.0 ± 0.5, which is the generally 295 

accepted value for the upper mantle (Nielsen and Rehkämper, 2011; Nielsen et al., 2007; Nielsen et al., 296 

2006b). Among all of the samples analyzed, the Tl concentrations fall within 0.14 to 1.25 ng/g, which is 297 

consistent with the most recent estimate of Tl concentration in the upper mantle of 0.5±0.1 ng/g (Nielsen 298 

et al., 2014). There is no noticeable difference in concentration between unaltered harzburgite, rodingite 299 

and serpentinized harzburgite from either tectonic setting. The Tl concentrations measured here for 300 

serpentinites are similar to those found by Kodolanyi et al. (2012) in serpentinite clasts from various 301 

tectonic settings.  302 

Two of the serpentinite samples were run in duplicate through the entire procedure of sample 303 

dissolution, Tl separation and mass spectrometry (Table 3). Although the isotopic compositions measured 304 

for these duplicates are within analytical error, the concentrations registered for one of the samples are 305 
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outside of the ±10% uncertainty quoted for our concentration measurements.  This discrepancy could 306 

have been caused by a small amount of residual fluoride not coming completely into solution due to the 307 

relatively large quantity of sample (>1g) required to obtain sufficient Tl for isotopic analysis. 308 

Alternatively, it is possible that Tl is heterogeneously distributed in the samples. However, since we do 309 

not know the exact mineralogical partitioning of Tl in the serpentinite samples, it is difficult to further 310 

assess this hypothesis. In any case, the duplicates confirm that our data are precise and accurate to the 311 

quoted long-term reproducibility. 312 

 313 

5. Discussion 314 

 5.1. Origin of heavy thallium isotopic composition of forearc serpentinites 315 

All serpentinites analyzed from the Mariana forearc display Tl isotopic compositions of ε205Tl > -316 

0.5, which is significantly heavier than normal mantle. This difference indicates that Tl isotope ratios in 317 

the harzburgite protolith were altered during serpentinization. The likely high Tl concentrations in the 318 

serpentinizing fluids and low Tl concentrations in harzburgites imply that the total Tl budget of the 319 

serpentinization system is skewed heavily towards the fluid. In addition, the lack of Tl isotope 320 

fractionation between hydrothermal fluid (T ~ 200-400°C) and hydrothermally altered rock (Nielsen et 321 

al., 2006c) suggests that the Tl isotope compositions of the serpentinites reflect that of the serpentinizing 322 

fluids, and not an isotope fractionation process taking place during serpentinization. On the basis of high 323 

B and Li concentrations and unradiogenic Sr isotope compositions of Mariana forearc serpentinites, it was 324 

argued that seawater on its own could not represent a major source of serpentinization fluids (Savov et al., 325 

2007). This conclusion is confirmed by our isotopically heavy Tl isotope serpentinite data because open 326 

ocean seawater is characterized by ε205Tl = -6 ± 0.5 (Nielsen et al., 2006c; Rehkämper et al., 2002), which 327 

is far from all the measured ε205Tl of forearc serpentinite (Table 3). The question then arises as to what 328 

the origin of heavy Tl isotope compositions in the serpentinizing fluid is? Thallium isotope fractionation 329 

between source rock and serpentinizing fluid is also unlikely given that the extraction of the 330 



 14 

serpentinizing fluid from the subducting slab likely took place at temperatures similar to that of the 331 

serpentinization itself i.e. ~175-240°C (Kahl et al., 2015). Hence, the serpentinizing fluid characterized by 332 

ε205Tl > -0.5 must have been derived from a source with similar Tl isotopic composition.  333 

There are multiple possible fluid sources within the subducting slab: previously serpentinized 334 

oceanic mantle (Barnes et al., 2008), hydrothermally altered oceanic crust (Sakai et al., 1990), and 335 

subducted sediments (Alt and Shanks, 2006). Of these three slab components, only pelagic sediments 336 

have been observed to systematically exhibit ε205Tl > -2 (Coggon et al., 2014; Nielsen et al., 2006c; 337 

Rehkämper et al., 2004), Table 3), which implies that fluids released from sediments are the most likely 338 

source of heavy Tl isotopes measured for Mariana forearc serpentinites.  339 

The oceanic crust and sediments that are being subducted at the Mariana arc (ODP Hole 801C) 340 

were previously investigated for Tl isotopes. Analyses of two discrete pelagic clays were rich in Tl 341 

(~3000 ng/g) with isotope compositions of ε205Tl = -0.3 and 0.4 (Prytulak et al., 2013). Altered oceanic 342 

crust from ODP Hole 801C, on the other hand, was not significantly enriched in Tl compared with fresh 343 

basaltic melts and was found to vary from ε205Tl = -4 to 0 (Prytulak et al., 2013). Five serpentinites 344 

investigated here are isotopically heavier (ε205Tl > +1) than both sediments and altered oceanic crust from 345 

ODP Hole 801C, which makes it unlikely for these bulk components to be the primary source of Tl in the 346 

serpentinizing fluid. It should be noted that, as opposed to the nine composite altered oceanic crust 347 

samples from ODP Hole 801C that sample averages of the main units in the upper ~400m of low-T 348 

altered oceanic crust, only two discrete samples of pelagic sediment from ODP Hole 801C were reported 349 

(Prytulak et al., 2013) and it is possible that other pelagic sediment samples from ODP Hole 801C might 350 

contain slightly heavier Tl isotope compositions as has been observed for modern pelagic sediments 351 

(Rehkämper et al., 2004). The heavy Tl isotope compositions of pelagic sediments reflect the presence of 352 

Mn oxides that form as coatings on sediment particles. Sedimentary particles themselves can contain Tl 353 

concentrations similar to or higher than continental crust ([Tl] ~ 300-500 ng/g, (Nielsen et al., 2005; 354 

Wedepohl, 1995)) and are also characterized by Tl isotope compositions akin to that of the continental 355 

crust; ε205Tl ~ -2 (Nielsen et al., 2005). Thus, Mn oxide coatings on pelagic sediment particles are likely 356 
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isotopically heavier than the bulk sediment. Given that the serpentinizing fluids can be highly reducing 357 

(Klein et al., 2013) and that Mn oxides (MnO2) are readily soluble under reducing conditions because 358 

Mn(IV) is reduced to highly soluble Mn(II), it follows that the Mn oxide component of pelagic clays 359 

would be preferentially mobilized into the fluid. This process would cause the Tl isotope composition of 360 

the fluid to be heavier than the bulk sediment, which may explain why the serpentinizing fluids, as 361 

recorded by the serpentinites, appear to have had somewhat heavier Tl isotope compositions than the bulk 362 

sediment source.  363 

It should be noted that Cl isotope evidence appear to implicate fluids released from previously 364 

serpentinized oceanic peridotites as the source of Cl in forearc serpentinization reactions (Barnes et al., 365 

2008). The Tl isotope evidence presented here, however, does not exclude this possibility because the Tl 366 

content of oceanic serpentinites are so low that fluids released from such a rock would likely contain 367 

vanishingly small amounts of Tl and therefore not contribute to the Tl budget of these fluids. 368 

Serpentinization is associated with chlorine isotope fractionation of ~0.4 permil (Barnes et al., 2008), 369 

which would yield δ37Cl ~ -0.4 to 0 for the serpentinizing fluids in equilibrium with the Mariana forearc 370 

serpentinites (Barnes et al., 2008). It is particularly noteworthy that pelagic sediments from ODP Holes 371 

800A, 801A and 1149A have some of the highest Cl concentrations (>1%) coupled with the heaviest 372 

sediment Cl isotope compositions of δ37Cl ~ -0.3 to -0.7, which is within the expected range for the Cl 373 

isotope composition of the serpentinizing fluid. Chlorine isotopic data are therefore equally compatible 374 

with pelagic sediments contributing to the serpentinization fluids. 375 

 5.2. Light Tl isotopes in brucite/iowaite-bearing serpentinite 376 

Even though the samples analyzed in this study fall into two statistically different groups, it is 377 

likely that the relatively dynamic fluid environment of the Mariana forearc will produce a continuum of 378 

compositions between the light and the heavy isotope compositions observed. As such, the division of our 379 

samples into two groups may be an artifact of the small number samples analyzed. However, it is 380 

interesting that the isotopically lighter samples also display the lowest SiO2 contents (<35%), highest Tl 381 

and Zn (not shown) concentrations, and the highest loss on ignition (LOI) >16% (Fig. 3). These 382 
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relationships suggest that the observed Tl isotopic differences between the two groups were generated by 383 

systematic differences in either hydrothermal conditions, like temperature, or fluid compositions.  384 

Serpentine, which is the dominant alteration phase during initial serpentinization near the 385 

décollement, can form at relatively high silica activities (Klein et al., 2009). Serpentine contains ~ 42 386 

wt.% SiO2 and ~14 wt.% H2O and thus accounts for the majority of water and SiO2 in most of the 387 

serpentinites. Iron-bearing brucite and iowaite, which overprinted the initial serpentinization mineralogy 388 

(Fig. 2), contain about 25 to 32 wt.% water, respectively, but no Si. Samples exhibiting ε205Tl < +1 389 

generally contain higher abundances of Fe-bearing brucite and iowaite, which accounts for the higher 390 

observed LOI and lower SiO2 concentrations. However, modal abundances of serpentine, brucite and 391 

iowaite vary widely on a thin section scale, making it difficult to directly relate in situ thin section 392 

analysis with Tl isotope analysis of bulk samples. Nevertheless, it appears that the decrease in ε205Tl is 393 

related to the event(s) that caused the precipitation of Fe-bearing brucite and/or iowaite. Although Fe-394 

bearing brucite can form at various stages during serpentinization (Beard et al., 2009; Kahl et al., 2015; 395 

Klein et al., 2009), its formation generally is indicative of relatively low silica activities (Klein et al., 396 

2009). Because the devolatilization of subducting pelagic clays and altered oceanic crust produces Si-rich 397 

fluids, Fe-bearing brucite formation near the décollement is unlikely to occur (cf. Kahl et al., 2015). 398 

However, the exact origin of the lighter Tl isotope composition measured for the Si-poor serpentinites is 399 

difficult to determine and may be explained by effects from temperature or changing fluid composition.  400 

The maximum temperature of the décollement at 25-30 km depth beneath the South Chamorro and 401 

Conical Seamounts is estimated to be 300°C based on thermal models for subduction of old oceanic crust, 402 

which is consistent with temperature estimates from petrological phase relations (Fryer et al., 2006; 403 

Hyndman and Peacock, 2003). Prograde metamorphism of some but not all serpentinites from Conical 404 

Seamount produced antigorite-brucite assemblages, which may reflect somewhat higher temperatures 405 

(Evans, 2004). However, the Fe-rich nature of brucite and lack of magnetite in several serpentinites 406 

suggest alteration temperatures of less than ca. 200°C (Klein et al., 2014; Klein et al., 2013). Such low 407 

temperatures are corroborated by estimates of Kahl et al. (2015), who calculate temperatures of 175 to 408 
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240°C on the basis of oxygen-isotope thermometry (assuming the δ18O of the serpentinization fluid was 409 

+2.5‰, (Fryer et al., 2006)). On the other hand, serpentinization fluids emanating from South Chamorro 410 

are cool (~2°C) (Fryer et al., 1990; Mottl et al., 2004) implying that hydrothermal alteration reactions in 411 

the forearc may span the full temperature range of about 300°C. This inference is supported by the 412 

presence of iowaite, which is believed to form at low temperatures (<60°C, (Frost and Erickson, 2004)) 413 

and its formation requires the addition of Cl and fairly oxidizing conditions that are not encountered 414 

during serpentinization. Heling and Schwarz (1992) analyzed iowaite in serpentinite mud from Conical 415 

Seamount and suggest that it forms in seafloor environments where Fe-bearing brucite is exposed to 416 

seawater.  417 

Although equilibrium Tl isotope fractionation is predicted to be very small in systems that, like 418 

serpentinization, dominantly contain only species of the univalent Tl ion (Table 4 in Schauble, 2007), 419 

hydrothermal temperature differences of more than 200°C could result in isotope fractionation factors that 420 

differ by more than 1 ε205Tl-unit (Schauble, 2007). Thus, if we assume no change in the Tl isotope 421 

composition of the serpentinizing fluid, then a fluid temperature change from 300°C to 50°C could 422 

produce rocks that were ~1 ε205Tl-unit lighter, which is consistent with the observed lighter values for 423 

samples that contain Fe-rich brucite and iowaite.  424 

Alternatively, if there is little to no Tl isotope fractionation occurring during any of the 425 

hydrothermal alteration reactions, then the Tl isotope composition of the serpentinites could reflect 426 

different fluid compositions, potentially extracted from separate sources. Large portions of the subducting 427 

slab, including detrital/clastic sediments and altered oceanic crust at ODP Hole 801C display ε205Tl = -1 ± 428 

0.5 (Nielsen et al., 2005; Prytulak et al., 2013), which is similar to the lightest Tl isotope compositions 429 

observed for the forearc serpentinites. This value is still outside the composition of serpentinized oceanic 430 

mantle, which rules out this component as a significant source of Tl to the serpentinizing fluids. 431 

 432 
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5.3 Rodingitization in the forearc mantle 433 

Rodingites are Ca-rich, Si- and alkali-poor metasomatic rocks (protoliths can range from mafic to 434 

granitic and sedimentary lithologies) that are exclusively associated with serpentinites (Bach et al., 2013; 435 

Coleman, 1963, 1977; Frost and Beard, 2007). Consequently, rodingitization is commonly conceptualized 436 

as Ca-metasomatism due to the breakdown of clinopyroxene during serpentinization (Coleman, 1963). 437 

However, several recent studies have highlighted the important role low silica activities imposed by 438 

serpentine-brucite-diopside phase equilibria at T < 330 °C play during rodingitization (Bach et al., 2013; 439 

Bach and Klein, 2009; Frost and Beard, 2007; Frost et al., 2008).  The low silica activities imposed by 440 

serpentinization lead to the removal of Si from the mafic or sedimentary protolith, thereby stabilizing Si-441 

poor Ca-Al silicates, including zoisite, prehnite, (hydro-)grossular/andradite, vesuviante, diopside and 442 

chlorite. At higher temperatures (~400°C), serpentinization fluids are buffered by serpentine-talc-443 

tremolite equilibria to significantly higher silica activities. Such fluids cannot form rodingite. Instead, 444 

monomineralic chlorite blackwalls form at the expense of mafic lithologies (Bach and Klein, 2009). Thus, 445 

rodingite can form wherever mafic lithologies are exposed to Si-poor serpentinization fluids such as along 446 

slow- and ultraslow spreading mid-ocean ridges, at continental margins, and in subduction zones. This 447 

raises the question as to where the rodingite drilled at Conical seamount originated? It seems unlikely that 448 

the rodingite formed in a mid-ocean ridge setting, since the oceanic crust presently subducted beneath the 449 

Mariana arc originated from a fast spreading ridge with a full spreading rate 160 mm/a. However, 450 

rodingitization at fast spreading ridges may still occur in tectonic windows such as Hess Deep, Equatorial 451 

Pacific (Mével and Stadoumi, 1996), where mantle peridotite and mafic lithologies are exposed to 452 

seawater. Thus, we cannot rule out that the diabase was originally rodingitized in the Eastern Pacific and 453 

then overprinted by sediment derived slab fluids in the Mariana forearc before it emerged at Conical 454 

seamount. However, several lines of evidence support the idea that rodingitization took place in situ 455 

within the shallow forearc mantle. First, serpentinization is known to take place in the Mariana forearc 456 

beneath the Conical and South Chamorro seamounts (Fryer, 2012) at temperatures susceptible to 457 

rodingitization (Bach and Klein, 2009). Second, the mafic lithologies of the subducting Pacific plate are 458 
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in close proximity to the overriding forearc mantle, making interaction between the two possible. Third, 459 

rodingitization involves a virtually complete loss of alkalis from the mafic precursor lithologies. Indeed, 460 

pore fluids sampled at Mariana forearc mud volcanoes are enriched in alkalis despite being primarily 461 

influenced by serpentinization reactions (Hulme et al., 2010; Mottl et al., 2004). Lastly, given that 462 

rodingitization is invariably linked to the serpentinization process, the heavy Tl isotope composition of 463 

the rodingite implicates a pelagic sediment source for the rodingitization fluid, which cannot have 464 

occurred in a mid ocean ridge setting. We, therefore, suggest that rodingitization took place during 465 

serpentinization in the forearc mantle. Although it remains unclear where exactly rodingitization took 466 

place, it seems likely that it was in a regime where Si activities were relatively low (Bach and Klein, 467 

2009), i.e. not in direct contact with Si-rich pelagic clays that would produce quartz-saturated fluids.  468 

 469 

6. Conclusions 470 

Previous studies have highlighted that fluids derived from the subducting Pacific plate are 471 

responsible for serpentinization of the forearc mantle, but the fluid sources driving this process, i.e. 472 

altered oceanic basement, subducted sediment, or a combination thereof remains controversial (Alt and 473 

Shanks, 2006; Barnes et al., 2008; Kahl et al., 2015; Sakai et al., 1990). This study used Tl isotope 474 

systematics in serpentinized peridotite from the South Chamorro and Conical seamount to trace fluid-rock 475 

reactions in the shallow Mariana forearc. The Tl isotope ratios measured in serpentinite clasts from the 476 

South Chamorro and Conical Seamounts were all heavier than the harzburgite protolith, which strongly 477 

implicates serpentinization by a fluid extracted from pelagic sediments. A subset of the analyzed 478 

serpentinites was characterized by lower SiO2 concentrations, higher Tl and Zn concentrations, higher 479 

LOI, and the lightest Tl isotope compositions (Fig. 3). These samples contained greater abundances of Fe-480 

rich brucite and iowaite, which have been inferred to record hydrothermal alteration temperatures of 481 

<200°C (Kahl et al., 2015), perhaps as low as 50°C (Heling and Schwarz, 1992). As theoretical isotope 482 

fractionation calculations predict (Schauble, 2007), these data suggest that lower alteration temperatures 483 

produce lighter Tl isotope compositions. However, given that Tl isotopes in the Si-poor samples are 484 
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similar to both clastic sediments and altered oceanic crust subducted beneath the Mariana arc, we cannot 485 

unambiguously use Tl isotopes to further constrain the origin of lighter ε205Tl in some of the investigated 486 

samples. 487 

The heavy ε205Tl value of a rodingite from Conical seamount is consistent with rodingitization via 488 

sediment-derived serpentinization fluids, which highlights that mass transfer between sediments, mafic- 489 

and ultramafic lithologies takes place at shallow levels within the forearc mantle. As such, metasomatic 490 

mass transfer at temperatures up to 300 °C must be taken into account when assessing the elemental 491 

budgets of subduction zones. In particular, fluid mobile elements like B, Pb, Tl, Cs and others could 492 

potentially be stripped from specific lithologies in the subducting plate to a degree that significantly 493 

affects the elemental and isotopic mass balance of the total slab. Ultimately these processes could affect 494 

not just chemical and isotopic signatures translated into arc lavas, but also the magnitude of mass transfer 495 

of these elements into the mantle.  496 

The results presented here are suggestive of systematic Tl isotope changes in response to chemical 497 

and physical changes in the hydrothemal alteration environment of the Mariana forearc. However, given 498 

the relatively small dataset presented, we caution that further work is needed before the processes 499 

controlling the relationships between Tl isotopes, LOI and silica content can be accurately determined. 500 

 501 
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Figure captions: 673 

Figure 1: Simplified schematic illustration of thallium isotope compositions encountered in a forearc 674 
tectonic setting compared with those measured for Mariana forearc serpentinites and rodingite. Note that 675 
this illustration is not to scale. Moreover, because the extent and nature of the forearc crust is not well 676 
constrained, it is omitted here for the sake of simplicity. Deep faults may or may not connect directly with 677 
the décollement. Rodingite formation, which is favored during serpentinization at temperatures lower 678 
than ca. 300°C (Bach et al., 2013; Bach and Klein, 2009), probably takes place away from the 679 
décollement in Si-depleted environments. At the décollement where the expelled fluid is in equilibrium 680 
with Si-rich slab components, such as sediments or oceanic crust, rodingitization seems unlikely. Instead 681 
blackwall alteration of mafic lithologies and steatitization of peridotite seems more likely (Bach et al., 682 
2013). Thallium isotope data from (Coggon et al., 2014; Nielsen et al., 2006b; Nielsen et al., 2006c; 683 
Nielsen et al., 2013; Rehkämper et al., 2004; Rehkämper et al., 2002) and this study. Diagram is modified 684 
from Fryer et al. (2006). 685 
 686 
Figure 2: Thin section photomicrograph mosaics (a, b, e, f), confocal Raman maps (c, d) and back 687 
scatter electron image (g) of strongly serpentinized peridotite. a) Peridotite (Sample 1200A 3R-1W, 3-7 688 
cm) is altered to lizardite (Lz) and minor magnetite (Mag), whereas brucite (Brc) is present only in trace 689 
amounts. Spinel (Spl) is virtually unaltered. Late chrysotile veins cut across earlier veins and mesh 690 
texture (cf. Kahl et al., in revision). b) Sample 1200A 13R-1W, 121-124 cm. Olivine (Ol) is altered to 691 
lizardite, brucite and iowaite (Iow), whereas magnetite did not form. c) Confocal Raman map showing 692 
Fe-bearing brucite (blue), iowaite (red) and lizardite (green) in mesh texture. Note that iowaite partly 693 
replaces brucite. Raman bands at 444cm-1, 527cm-1 and 690cm-1 were chosen to represent brucite, 694 
iowaite, and lizardite, respectively. The latter was confirmed using O-H stretching band at 3708cm-1. d) 695 
Confocal Raman map (colors same as in c) showing a late vein of Fe-rich brucite, which is partly 696 
replaced by iowaite. e) Rodingitized diabase (Sample 779A 31R-2W, 85-87cm) is composed of secondary 697 
diopside (Di), hydrogarnet (Grt), and minor chlorite, in addition to a number of trace phases. f) Strongly 698 
serpentinized, brucite-poor harzburgite (sample 779A 10R-2W, 51-53cm). g) Partly serpentinized olivine 699 
in brucite-free mesh texture, consisting of lizardite and Ni-Fe rich opaque phases.   700 
 701 
Figure 3: Thallium isotope compositions of serpentinites and rodingite from the Mariana forearc plotted 702 
against a) loss on ignition (LOI), b) SiO2 and c) Tl concentrations. Fields for the composition of the 703 
harzburgite protolith before hydrothermal alteration are also shown in b) and c). The Tl concentration of 704 
harzburgite is estimated based on our measurement of one harzburgite from Eifel, Germany, combined 705 
with the most recent estimate of the average Tl content of the upper mantle of 0.5 ng/g (Nielsen et al., 706 
2014). We also took into account that Tl is an incompatible trace element and therefore harzburgites from 707 
the normal depleted mantle are likely to exhibit Tl concentrations significantly lower than the average 708 
upper mantle.  It is evident that lower LOI and Tl concentrations and higher SiO2 concentrations 709 
characterize the isotopically heavier samples. These relationships imply that different alteration 710 
conditions produced serpentinites with different Tl isotope compositions (see text for details). 711 
  712 
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Table 1: Thallium isotope and concentration data for BHVO-1 713 
Split number ε205Tl [Tl] (ng/g) 
1 -3.45 39.5 
2 -3.52 39.2 
3 -3.23 35.6 
4 -3.42 34.3 
5 -3.51 36.8 
6 -3.29 33.1 
7 -3.85 38.2 
8 -3.45 35.6 
9 -4.10 39.2 
10 -3.35 37.3 
Average -3.5 36.9 
2sd 0.5 4.4 
 714 

 715 

  716 
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