36 research outputs found

    Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry

    Get PDF
    This study investigates the long-term evolution of subtropical ozone profile time series (1999–2010) obtained from ground-based FTIR (Fourier Transform InfraRed) spectrometry at the Izaña Observatory ozone super-site. Different ozone retrieval strategies are examined, analysing the influence of an additional temperature retrieval and different constraints. The theoretical assessment reveals that the FTIR system is able to resolve four independent ozone layers with a precision of better than 6% in the troposphere and of better than 3% in the lower, middle and upper stratosphere. This total error includes the smoothing error, which dominates the random error budget. Furthermore, we estimate that the measurement noise as well as uncertainties in the applied atmospheric temperature profiles and instrumental line shape are leading error sources. We show that a simultaneous temperature retrieval can significantly reduce the total random errors and that a regular determination of the instrumental line shape is important for producing a consistent long-term dataset. These theoretical precision estimates are empirically confirmed by daily intercomparisons with Electro Chemical Cell (ECC) sonde profiles. In order to empirically document the long-term stability of the FTIR ozone profile data we compare the linear trends and seasonal cycles as obtained from the FTIR and ECC time series. Concerning seasonality, in winter both techniques observe stratospheric ozone profiles that are typical middle latitude profiles (low tropopause, low ozone maximum concentrations) and in summer/autumn profiles that are typical tropical profiles (high tropopause, high maximum concentrations). The linear trends estimated from the FTIR and the ECC datasets agree within their error bars. For the FTIR time series, we observe a significant negative trend in the upper troposphere/lower stratosphere of about −0.2%yr−1 and a significant positive trend in the middle and upper stratosphere of about +0.3%yr−1 and +0.4%yr−1, respectively. Identifying such small trends is a difficult task for any measurement technique. In this context, super-sites applying different techniques are very important for the detection of reliable ozone trends

    Evaluating modelled tropospheric columns of CH4_4 , CO, and O3_3 in the Arctic using ground-based Fourier transform infrared (FTIR) measurements

    Get PDF
    This study evaluates tropospheric columns of methane, carbon monoxide, and ozone in the Arctic simulated by 11 models. The Arctic is warming at nearly 4 times the global average rate, and with changing emissions in and near the region, it is important to understand Arctic atmospheric composition and how it is changing. Both measurements and modelling of air pollution in the Arctic are difficult, making model validation with local measurements valuable. Evaluations are performed using data from five high-latitude ground-based Fourier transform infrared (FTIR) spectrometers in the Network for the Detection of Atmospheric Composition Change (NDACC). The models were selected as part of the 2021 Arctic Monitoring and Assessment Programme (AMAP) report on short-lived climate forcers. This work augments the model–measurement comparisons presented in that report by including a new data source: column-integrated FTIR measurements, whose spatial and temporal footprint is more representative of the free troposphere than in situ and satellite measurements. Mixing ratios of trace gases are modelled at 3-hourly intervals by CESM, CMAM, DEHM, EMEP MSC-W, GEM- MACH, GEOS-Chem, MATCH, MATCH-SALSA, MRI-ESM2, UKESM1, and WRF-Chem for the years 2008, 2009, 2014, and 2015. The comparisons focus on the troposphere (0–7 km partial columns) at Eureka, Canada; Thule, Greenland; Ny Ålesund, Norway; Kiruna, Sweden; and Harestua, Norway. Overall, the models are biased low in the tropospheric column, on average by −9.7 % for CH4_4, −21 % for CO, and −18 % for O3_3. Results for CH4_4 are relatively consistent across the 4 years, whereas CO has a maximum negative bias in the spring and minimum in the summer and O3_3 has a maximum difference centered around the summer. The average differences for the models are within the FTIR uncertainties for approximately 15 % of the model–location comparisons

    Validation of MIPAS HNO3 operational data

    Get PDF
    Nitric acid (HNO3) is one of the key products that are operationally retrieved by the European Space Agency (ESA) from the emission spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT. The product version 4.61/4.62 for the observation period between July 2002 and March 2004 is validated by comparisons with a number of independent observations from ground-based stations, aircraft/balloon campaigns, and satellites. Individual HNO3 profiles of the ESA MIPAS level-2 product show good agreement with those of MIPAS-B and MIPAS-STR (the balloon and aircraft version of MIPAS, respectively), and the balloon-borne infrared spectrometers MkIV and SPIRALE, mostly matching the reference data within the combined instrument error bars. In most cases differences between the correlative measurement pairs are less than 1 ppbv (5-10%) throughout the entire altitude range up to about 38 km (similar to 6 hPa), and below 0.5 ppbv (15-20% or more) above 30 km (similar to 17 hPa). However, differences up to 4 ppbv compared to MkIV have been found at high latitudes in December 2002 in the presence of polar stratospheric clouds. The degree of consistency is further largely affected by the temporal and spatial coincidence, and differences of 2 ppbv may be observed between 22 and 26 km (similar to 50 and 30 hPa) at high latitudes near the vortex boundary, due to large horizontal inhomogeneity of HNO3. Similar features are also observed in the mean differences of the MIPAS ESA HNO3 VMRs with respect to the ground-based FTIR measurements at five stations, aircraft-based SAFIRE-A and ASUR, and the balloon campaign IBEX. The mean relative differences between the MIPAS and FTIR HNO3 partial columns are within +/- 2%, comparable to the MIPAS systematic error of similar to 2%. For the vertical profiles, the biases between the MIPAS and FTIR data are generally below 10% in the altitudes of 10 to 30 km. The MIPAS and SAFIRE HNO3 data generally match within their total error bars for the mid and high latitude flights, despite the larger atmospheric inhomogeneities that characterize the measurement scenario at higher latitudes. The MIPAS and ASUR comparison reveals generally good agreements better than 10-13% at 20-34 km. The MIPAS and IBEX measurements agree reasonably well (mean relative differences within +/- 15%) between 17 and 32 km. Statistical comparisons of the MIPAS profiles correlated with those of Odin/SMR, ILAS-II, and ACE-FTS generally show good consistency. The mean differences averaged over individual latitude bands or all bands are within the combined instrument errors, and generally within 1, 0.5, and 0.3 ppbv between 10 and 40 km (similar to 260 and 4.5 hPa) for Odin/SMR, ILAS-II, and ACE-FTS, respectively. The standard deviations of the differences are between 1 to 2 ppbv. The standard deviations for the satellite comparisons and for almost all other comparisons are generally larger than the estimated measurement uncertainty. This is associated with the temporal and spatial coincidence error and the horizontal smoothing error which are not taken into account in our error budget. Both errors become large when the spatial variability of the target molecule is high.Peer reviewe

    Validation of MIPAS ClONO2 measurements

    Get PDF
    Altitude profiles of ClONO2 retrieved with the IMK (Institut fur Meteorologie und Klimaforschung) science-oriented data processor from MIPAS/Envisat (Michelson Interferometer for Passive Atmospheric Sounding on Envisat) mid-infrared limb emission measurements between July 2002 and March 2004 have been validated by comparison with balloon-borne (Mark IV, FIRS2, MIPAS-B), airborne (MIPAS-STR), ground-based (Spitsbergen, Thule, Kiruna, Harestua, Jungfraujoch, Izana, Wollongong, Lauder), and spaceborne (ACE-FTS) observations. With few exceptions we found very good agreement between these instruments and MIPAS with no evidence for any bias in most cases and altitude regions. For balloon-borne measurements typical absolute mean differences are below 0.05 ppbv over the whole altitude range from 10 to 39 km. In case of ACE-FTS observations mean differences are below 0.03 ppbv for observations below 26 km. Above this altitude the comparison with ACE-FTS is affected by the photochemically induced diurnal variation of ClONO2. Correction for this by use of a chemical transport model led to an overcompensation of the photochemical effect by up to 0.1 ppbv at altitudes of 30-35 km in case of MIPAS-ACE-FTS comparisons while for the balloon-borne observations no such inconsistency has been detected. The comparison of MIPAS derived total column amounts with ground-based observations revealed no significant bias in the MIPAS data. Mean differences between MIPAS and FTIR column abundances are 0.11 +/- 0.12 x 10(14) cm(-2) (1.0 +/- 1.1%) and -0.09 +/- 0.19 x 10(14) cm(-2) (-0.8 +/- 1.7%), depending on the coincidence criterion applied. chi(2) tests have been performed to assess the combined precision estimates of MIPAS and the related instruments. When no exact coincidences were available as in case of MIPAS-FTIR or MIPAS-ACE-FTS comparisons it has been necessary to take into consideration a coincidence error term to account for chi(2) deviations. From the resulting chi(2) profiles there is no evidence for a systematic over/underestimation of the MIPAS random error analysis.Peer reviewe

    Winter to winter variability of chlorine activation and ozone loss as observed by ground-based FTIR measurements at Kiruna since winter 1993/94

    No full text
    International audienceIn the framework of the NDACC (Network for the Detection of Atmospheric Composition Change) long-term FTIR (Fourier Transform Infrared) measurements have been performed at Kiruna since winter 1993/94. In this paper only observations made in the polar vortex are investigated. Due to Kiruna's preferential location with respect to the polar vortex more than 120 days of observation have been collected since 1993. Total column ozone losses of up to 28% have been measured, namely in the winters of 1995, 1996, 2000, 2003, 2005 and 2007. A comparison of observed ozone loss with data from the SAOZ (Système d'Analyse par Observation Zénithale) network shows very good agreement. Fully consistent with this, chlorine activation and removal of HNO3 from the gas phase have been also observed in these winters. In particular, chlorine activation of up to 65% has been measured in the beginning of 2005. Chlorine activation as well as ozone depletion correlates well with meteorological parameters such as stratospheric temperatures and volume of PSCs (Polar Stratospheric Clouds). In addition to studies using ozonesonde data, a correlation of chlorine activation with the volume of PSCs has been found

    Subtropical trace gas profiles determined by ground-based FTIR spectroscopy at Izaña (28° N, 16° W): Five-year record, error analysis, and comparison with 3-D CTMs [Discussion paper]

    No full text
    Within the framework of the NDSC (Network for the Detection of Stratospheric Change) ground-based FTIR solar absorption spectra have been routinely recorded at Izaña Observatory (28° N, 16° W) on Tenerife Island since March 1999. By analyzing the shape of the absorption lines, and their different temperature sensitivities, the vertical distribution of the absorbers can be retrieved. Unique time series of subtropical profiles of O3, HCl, HF, N2O, and CH4 are presented. The effects of both dynamical and chemical annually varying trace gas cycles can be seen in the retrieved profiles. These include enhanced upwelling and photochemistry in summer and a more disturbed atmosphere in winter, which are typical of the subtropical stratosphere. A detailed error analysis has been performed for each profile. The output from two different three-dimensional (3-D) chemical transport models (CTMs), which are forced by ECMWF analyses, are compared to the measured profiles. Both models agree well with the measurements in tracking abrupt variations in the atmospheric structure, e.g. due to tropical streamers, in particular for the lower stratosphere. Simulated and measured profiles also reflect similar dynamical and chemical annual cycles. However, the differences between their mixing ratios clearly exceed the error bars estimated for the measured profiles. Possible reasons for this are discussed.We thank the Bundesministerium für Bildung und Forschung via the DLR by contracts 50EE0008 and 50EE0203 for fundin

    The imprint of stratospheric transport on column-averaged methane

    Get PDF
    Model simulations of column-averaged methane mixing ratios (XCH4) are extensively used for inverse estimates of methane (CH4) emissions from atmospheric measurements. Our study shows that virtually all chemical transport models (CTM) used for this purpose are affected by stratospheric model-transport errors. We quantify the impact of such model transport errors on the simulation of stratospheric CH4 concentrations via an a posteriori correction method. This approach compares measurements of the mean age of air with modeled age and expresses the difference in terms of a correction to modeled stratospheric CH4 mixing ratios. We find age differences up to ~ 3 years yield to a bias in simulated CH4 of up to 250 parts per billion (ppb). Comparisons between model simulations and ground-based XCH4 observations from the Total Carbon Column Network (TCCON) reveal that stratospheric model-transport errors cause biases in XCH4 of ~ 20 ppb in the midlatitudes and ~ 27 ppb in the arctic region. Improved overall as well as seasonal model-observation agreement in XCH4 suggests that the proposed, age-of-air-based stratospheric correction is reasonable. The latitudinal model bias in XCH4 is supposed to reduce the accuracy of inverse estimates using satellite-derived XCH4 data. Therefore, we provide an estimate of the impact of stratospheric model-transport errors in terms of CH4 flux errors. Using a one-box approximation, we show that average model errors in stratospheric transport correspond to an overestimation of CH4 emissions by ~ 40 % (~ 7 Tg yr−1) for the arctic, ~ 5 % (~ 7 Tg yr−1) for the northern, and ~ 60 % (~ 7 Tg yr−1) for the southern hemispheric mid-latitude region. We conclude that an improved modeling of stratospheric transport is highly desirable for the joint use with atmospheric XCH4 observations in atmospheric inversions

    Bodengebundene Messungen relevanter Spurengase zur Erforschung der Ozonchemie in der arktischen Stratosphaere mit Fourier-Spektrometern

    No full text
    Es handelt sich um den Schlussbericht eines vom BMFT gefoerderten Vorhabens, das unter dem Foerderkennzeichen 01 V0Z15 6 vom 01.03.1990 bis zum 30.06.1993 lief. Das Ziel des Vorhabens lag in der Erfassung von Saeulengehalten von Spurengasen, die fuer die Ozonchemie und fuer die Ausbildung von Ozonsenken in der Arktis relevant sind. Dabei sollte geklaert werden, welchen Anteil dynamische und chemische Prozesse haben und ob die Chemie der arktischen Stratosphaere Parallelen zu denjenigen in der Antarktis aufweist. Als Geraete wurden zwei Fourier-Transformationsspektrometer (FTS) eingesetzt, die das IR-Spektrum des direkten Sonnenlichts messen, das die atmosphaerischen Spurengase in Abhaengigkeit ihrer Konzentration selektiv schwaechen. Zur Berechnung der Saeulendichten werden synthetische Spektren unter Beruecksichtigung der Messgeometrie an die gemessenen angepasst und die zur Berechnung der synthetischen Spektren verwendeten vertikalen Profile der Mischungsverhaeltnisse in einem Least-squares-fit-Verfahren variiert. Ein Vorteil dieser Messtechnik ist, dass in derselben sondierten Luftmasse die Saeulengehalte vieler Spurengase simultan bestimmt werden koennen. (orig.)This is the final report of a project, which was funded by the German Federal Ministry for Research and Technology (BMFT), file No. 01 V0Z15 6, and was conducted from 1 March, 1990 until 30 June, 1993. It was the goal of the project to record zenith column amounts (ZCA's) of trace gases, which are relevant to ozone chemistry and to the development of ozone sinks in the Arctic. Above all, the contribution of dynamic and chemical processes was to be clarified as well as the question whether parallels can be drawn between the chemistry of the Arctic and the Antarctic stratosphere. The equipment used were two Fourier transform spectrometers (FTS). They allow the IR spectrum of direct sunlight to be measured which is attenuated selectively by the atmospheric trace gases, dependent on their concentrations. To be able to calculate the ZCA's, synthetic spectra are fitted to the measured ones taking into account the measuring geometry, and by varying vertical profiles of the mixing ratios used to calculate the synthetic spectra. An advantage offered by this measuring technique is that the ZCA's of many trace gases can be determined simultaneously in the same probed mass of air. (orig.)SIGLEAvailable from TIB Hannover: ZA 5141(5242) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Forschung und Technologie (BMFT), Bonn (Germany)DEGerman
    corecore