6,480 research outputs found

    Breakdown of the Z=8 shell closure in unbound 12O and its mirror symmetry

    Get PDF
    An excited state in the proton-rich unbound nucleus 12O was identified at 1.8(4) MeV via missing-mass spectroscopy with the 14O(p,t) reaction at 51  AMeV. The spin-parity of the state was determined to be 0+ or 2+ by comparing the measured differential cross sections with distorted-wave calculations. The lowered location of the excited state in 12O indicates the breakdown of the major shell closure at Z=8 near the proton drip line. This demonstrates the persistence of mirror symmetry in the disappearance of the magic number 8 between 12O and its mirror partner 12Be

    Structure of unbound neutron-rich 9^{9}He studied using single-neutron transfer

    Get PDF
    The 8He(d,p) reaction was studied in inverse kinematics at 15.4A MeV using the MUST2 Si-CsI array in order to shed light on the level structure of 9He. The well known 16O(d,p)17O reaction, performed here in reverse kinematics, was used as a test to validate the experimental methods. The 9He missing mass spectrum was deduced from the kinetic energies and emission angles of the recoiling protons. Several structures were observed above the neutron-emission threshold and the angular distributions were used to deduce the multipolarity of the transitions. This work confirms that the ground state of 9He is located very close to the neutron threshold of 8He and supports the occurrence of parity inversion in 9He.Comment: Exp\'erience GANIL/SPIRAL1/MUST

    Proton Driven Plasma Wakefield Acceleration

    Full text link
    Plasma wakefield acceleration, either laser driven or electron-bunch driven, has been demonstrated to hold great potential. However, it is not obvious how to scale these approaches to bring particles up to the TeV regime. In this paper, we discuss the possibility of proton-bunch driven plasma wakefield acceleration, and show that high energy electron beams could potentially be produced in a single accelerating stage.Comment: 13 pages, 4 figure

    Stress response inside perturbed particle assemblies

    Full text link
    The effect of structural disorder on the stress response inside three dimensional particle assemblies is studied using computer simulations of frictionless sphere packings. Upon applying a localised, perturbative force within the packings, the resulting {\it Green's} function response is mapped inside the different assemblies, thus providing an explicit view as to how the imposed perturbation is transmitted through the packing. In weakly disordered arrays, the resulting transmission of forces is of the double-peak variety, but with peak widths scaling linearly with distance from the source of the perturbation. This behaviour is consistent with an anisotropic elasticity response profile. Increasing the disorder distorts the response function until a single-peak response is obtained for fully disordered packings consistent with an isotropic description.Comment: 8 pages, 7 figure captions To appear in Granular Matte

    Accelerator and Reactor Neutrino Oscillation Experiments in a Simple Three-Generation Framework

    Get PDF
    We present a new approach to the analysis of neutrino oscillation experiments, in the one mass-scale limit of the three-generation scheme. In this framework we reanalyze and recombine the most constraining accelerator and reactor data, in order to draw precise bounds in the new parameter space. We consider our graphical representations as particularly suited to show the interplay among the different oscillation channels. Within the same framework, the discovery potential of future short and long baseline experiments is also investigated, in the light of both the recent signal from the LSND experiment and the atmospheric neutrino anomaly.Comment: uuencoded compressed tar file. Figures (13) available by ftp to ftp://eku.sns.ias.edu/pub/lisi/ (192.16.204.30). Submitted to Physical Review

    Explanation of the Gibbs paradox within the framework of quantum thermodynamics

    Full text link
    The issue of the Gibbs paradox is that when considering mixing of two gases within classical thermodynamics, the entropy of mixing appears to be a discontinuous function of the difference between the gases: it is finite for whatever small difference, but vanishes for identical gases. The resolution offered in the literature, with help of quantum mixing entropy, was later shown to be unsatisfactory precisely where it sought to resolve the paradox. Macroscopic thermodynamics, classical or quantum, is unsuitable for explaining the paradox, since it does not deal explicitly with the difference between the gases. The proper approach employs quantum thermodynamics, which deals with finite quantum systems coupled to a large bath and a macroscopic work source. Within quantum thermodynamics, entropy generally looses its dominant place and the target of the paradox is naturally shifted to the decrease of the maximally available work before and after mixing (mixing ergotropy). In contrast to entropy this is an unambiguous quantity. For almost identical gases the mixing ergotropy continuously goes to zero, thus resolving the paradox. In this approach the concept of ``difference between the gases'' gets a clear operational meaning related to the possibilities of controlling the involved quantum states. Difficulties which prevent resolutions of the paradox in its entropic formulation do not arise here. The mixing ergotropy has several counter-intuitive features. It can increase when less precise operations are allowed. In the quantum situation (in contrast to the classical one) the mixing ergotropy can also increase when decreasing the degree of mixing between the gases, or when decreasing their distinguishability. These points go against a direct association of physical irreversibility with lack of information.Comment: Published version. New title. 17 pages Revte

    Strong enhancement of extremely energetic proton production in central heavy ion collisions at intermediate energy

    Full text link
    The energetic proton emission has been investigated as a function of the reaction centrality for the system 58Ni + 58Ni at 30A MeV. Extremely energetic protons (EpNN > 130 MeV) were measured and their multiplicity is found to increase almost quadratically with the number of participant nucleons thus indicating the onset of a mechanism beyond one and two-body dynamics.Comment: 5 pages, 2 figures, submitted to Physical Review Letter

    Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and Simulation

    Get PDF
    We investigate the effective conductivity (σe\sigma_e) of a class of amorphous media defined by the level-cut of a Gaussian random field. The three point solid-solid correlation function is derived and utilised in the evaluation of the Beran-Milton bounds. Simulations are used to calculate σe\sigma_e for a variety of fields and volume fractions at several different conductivity contrasts. Relatively large differences in σe\sigma_e are observed between the Gaussian media and the identical overlapping sphere model used previously as a `model' amorphous medium. In contrast σe\sigma_e shows little variability between different Gaussian media.Comment: 15 pages, 14 figure

    Noisy random resistor networks: renormalized field theory for the multifractal moments of the current distribution

    Full text link
    We study the multifractal moments of the current distribution in randomly diluted resistor networks near the percolation treshold. When an external current is applied between to terminals xx and x′x^\prime of the network, the llth multifractal moment scales as MI(l)(x,x′)∼∣x−x′∣ψl/νM_I^{(l)} (x, x^\prime) \sim | x - x^\prime |^{\psi_l /\nu}, where ν\nu is the correlation length exponent of the isotropic percolation universality class. By applying our concept of master operators [Europhys. Lett. {\bf 51}, 539 (2000)] we calculate the family of multifractal exponents {ψl}\{\psi_l \} for l≥0l \geq 0 to two-loop order. We find that our result is in good agreement with numerical data for three dimensions.Comment: 30 pages, 6 figure
    • …
    corecore