16 research outputs found

    Linear Response in Complex Systems: CTRW and the Fractional Fokker-Planck Equations

    Full text link
    We consider the linear response of systems modelled by continuous-time random walks (CTRW) and by fractional Fokker-Planck equations under the influence of time-dependent external fields. We calculate the corresponding response functions explicitely. The CTRW curve exhibits aging, i.e. it is not translationally invariant in the time-domain. This is different from what happens under fractional Fokker-Planck conditions

    Relaxation Properties of Small-World Networks

    Full text link
    Recently, Watts and Strogatz introduced the so-called small-world networks in order to describe systems which combine simultaneously properties of regular and of random lattices. In this work we study diffusion processes defined on such structures by considering explicitly the probability for a random walker to be present at the origin. The results are intermediate between the corresponding ones for fractals and for Cayley trees.Comment: 16 pages, 6 figure

    Does strange kinetics imply unusual thermodynamics?

    Full text link
    We introduce a fractional Fokker-Planck equation (FFPE) for Levy flights in the presence of an external field. The equation is derived within the framework of the subordination of random processes which leads to Levy flights. It is shown that the coexistence of anomalous transport and a potential displays a regular exponential relaxation towards the Boltzmann equilibrium distribution. The properties of the Levy-flight FFPE derived here are compared with earlier findings for subdiffusive FFPE. The latter is characterized by a non-exponential Mittag-Leffler relaxation to the Boltzmann distribution. In both cases, which describe strange kinetics, the Boltzmann equilibrium is reached and modifications of the Boltzmann thermodynamics are not required

    Sample-size dependence of the ground-state energy in a one-dimensional localization problem

    Full text link
    We study the sample-size dependence of the ground-state energy in a one-dimensional localization problem, based on a supersymmetric quantum mechanical Hamiltonian with random Gaussian potential. We determine, in the form of bounds, the precise form of this dependence and show that the disorder-average ground-state energy decreases with an increase of the size RR of the sample as a stretched-exponential function, exp(Rz)\exp( - R^{z}), where the characteristic exponent zz depends merely on the nature of correlations in the random potential. In the particular case where the potential is distributed as a Gaussian white noise we prove that z=1/3z = 1/3. We also predict the value of zz in the general case of Gaussian random potentials with correlations.Comment: 30 pages and 4 figures (not included). The figures are available upon reques

    Recent Developments in Understanding Two-dimensional Turbulence and the Nastrom-Gage Spectrum

    Get PDF
    Two-dimensional turbulence appears to be a more formidable problem than three-dimensional turbulence despite the numerical advantage of working with one less dimension. In the present paper we review recent numerical investigations of the phenomenology of two-dimensional turbulence as well as recent theoretical breakthroughs by various leading researchers. We also review efforts to reconcile the observed energy spectrum of the atmosphere (the spectrum) with the predictions of two-dimensional turbulence and quasi-geostrophic turbulence.Comment: Invited review; accepted by J. Low Temp. Phys.; Proceedings for Warwick Turbulence Symposium Workshop on Universal features in turbulence: from quantum to cosmological scales, 200

    Reaction Front in an A+B -> C Reaction-Subdiffusion Process

    Full text link
    We study the reaction front for the process A+B -> C in which the reagents move subdiffusively. Our theoretical description is based on a fractional reaction-subdiffusion equation in which both the motion and the reaction terms are affected by the subdiffusive character of the process. We design numerical simulations to check our theoretical results, describing the simulations in some detail because the rules necessarily differ in important respects from those used in diffusive processes. Comparisons between theory and simulations are on the whole favorable, with the most difficult quantities to capture being those that involve very small numbers of particles. In particular, we analyze the total number of product particles, the width of the depletion zone, the production profile of product and its width, as well as the reactant concentrations at the center of the reaction zone, all as a function of time. We also analyze the shape of the product profile as a function of time, in particular its unusual behavior at the center of the reaction zone

    KINETIC ROUGHENING AND INTERACTING REACTING SPECIES: NONLINEAR ASPECTS

    No full text

    Latent Markov Modelling of Recidivism Data

    No full text
    This article discusses the application of latent Markov modelling for the analysis of recidivism data. We briefly examine the relations of Markov modelling with log-linear analysis, pointing out pertinent differences as well. We show how the restrictive Markov model may be more easily applicable by adding latent variables to the model, in which case the latent Markov model is a dynamic version of the latent class model. As an illustration, we apply latent Markov analysis on an empirical data set of juvenile prosecution careers, showing how the Markov analyses producing well-fitting and interpretable solutions. We end by comparing the possible contributions of Markov modelling in recidivism research, outlining its drawbacks as well. Recommendations and directions for future research conclude the article
    corecore