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Articles

Mixture Latent Markov Modeling:
Identifying and Predicting
Unobserved Heterogeneity in
Longitudinal Qualitative Status
Change

Mo Wang1 and David Chan2

Abstract
There are many areas of organizational research where we may be concerned with subgroup
differences in status change profiles. The purpose of this article is to illustrate, using a real data
set on retirees’ postretirement employment statuses (PES), how mixture latent Markov modeling
may be applied to substantive research in organizational settings to identify population subgroups
with varying status change profiles and examine their correlates, by modeling unobserved
heterogeneity in longitudinal qualitative changes. Steps in the modeling process are highlighted
and limitations, cautions, recommendations, and extensions of the technique are discussed.

Keywords
mixture latent Markov modeling, latent transition analysis, longitudinal analysis, qualitative status
change

Many organizational research questions (e.g., newcomer adaptation, changes in organizational

commitment, dynamic performance, skill acquisition, withdrawal behaviors, and changes in

employment status) are concerned with, either explicitly or implicitly, phenomena that involve one

or more facets of changes over time. To empirically examine these research questions, we need to be

able to adequately model the data representing the substantive longitudinal processes of interest so

that we can accurately conceptualize and assess the relevant changes over time. An adequate

longitudinal model of the data presupposes the application of appropriate statistical techniques that

accurately describe and predict the various facets of change over time. A longitudinal modeling

technique is appropriate to the extent that its assumptions are valid for the data set to which it is

applied and the conceptual questions of interest on the nature of the changes over time (e.g., quali-

tative vs. quantitative changes), the level of measurement corresponding to the unit of theory in the
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change process (e.g., categorical vs. continuous variables), and the unreliability of measurement are

adequately incorporated in the technique (Chan, 1998).

Latent variable approaches are well suited for longitudinal modeling because they can explicitly

take into account both cross-sectional and longitudinal measurement errors. Hence, the researcher is

able to model a variety of error covariance structures and assess any distorting effects that cross-

sectional or longitudinal measurement errors may have on the various parameter estimates of true

change. In addition, longitudinal latent variable approaches are highly flexible and powerful because

a variety of latent variable models can be fitted to the longitudinal data to describe, in alternative

ways, the change over time (Chan, 2009).

Longitudinal latent variable approaches such as longitudinal factor analysis, longitudinal means

and covariance structures analysis, and latent growth modeling are appropriate when the latent

variables are continuous in nature (e.g., Chan, 1998; Raudenbush & Bryk, 2002). When the latent

variables are discrete (i.e., categorical) in nature, latent class analysis is appropriate. When

latent class modeling is applied to discrete longitudinal data, the analysis is known as latent transi-

tion analysis, which allows the researcher to specify dynamic latent class variables to test changes in

discrete statuses over time (e.g., stage-sequential changes in child development, changes in employ-

ment status among retirees). An excellent introduction to latent class analysis and latent transition

analysis is provided by Collins and Wugalter (1992). Recently, Muthén (2004) developed an inclu-

sive framework known as general growth mixture modeling, which combines latent growth models

and latent class models. This general framework allows the researcher to identify latent classes

(i.e., subgroups of individuals in the population) characterized by different patterns of latent growth

including changes in discrete statuses.

Within the general growth mixture modeling framework, it is possible to examine situations in

which it is unclear whether the population of interest is homogenous or heterogeneous with respect

to the longitudinal status change pattern, in the sense that whether a single status change pattern ade-

quately characterizes the entire population or the population is more adequately characterized by

subgroups with varying distinct status change patterns. Specific growth mixture modeling tech-

niques may be applied to identify possible unobserved subgroups in the population distinguished

by their distinct status change patterns, which we will label as status change profiles. If subgroups

indeed exist, we may proceed to identify correlates of the subgroups in terms of predictors and

criterion outcomes associated with the distinct subgroup differences in change profiles.

In many settings, including organizational situations, qualitative (i.e., discrete) changes in status

over time may not follow the same pattern for the entire population of interest. In other words, sub-

populations characterized by distinct status change profiles may exist and these subpopulation dif-

ferences may have substantive implications for the theories or hypotheses being examined. If these

subpopulations are observable subgroup membership variables that are known a priori such as

groupings by demographics (e.g., sex), then the longitudinal analyses may be quite easily performed

using some form of multiple-group analyses that separate the data set according to the subgroup

membership variable. However, if these subpopulations are unobserved (latent) in the sense that sub-

group membership is not known a priori but only empirically derived from the individual’s values on

a set of variables, then it is not possible to perform a straightforward multiple-group longitudinal

analysis because there is no known grouping variable.

There are many areas of organizational research where we may be concerned with subgroup dif-

ferences in status change profiles. For example, people’s employment status may change over time

(e.g., at each time point, it could simply be dichotomized into two discrete statuses: being employed

vs. not being employed). For organizational researchers who are interested in studying long-term

career change–related issues, it is important to statistically identify and summarize these employ-

ment status changes over time into meaningful trends and predict these trends to better understand

the different status change profiles. In the field of retirement research, there is an increasing interest
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for researchers to identify and describe retirees’ different change patterns in employment status after

retirement and to profile the corresponding retiree subpopulations, including identifying time-

invariant predictors or time-varying correlates of these change patterns (e.g., Shultz, 2003;

Wang, Zhan, Liu, & Shultz, 2008). This type of research on unobserved subgroup populations has

important conceptual and practical implications. In this example, the unobserved subgroup

heterogeneity in longitudinal changes provides conceptual clarifications to the retirement process.

Practically, it could help identify the factors that attract and motivate retirees to take postretirement

employment. Another example is the area of employee withdrawal behaviors in which we could

model subpopulations with different profiles of status changes in discrete withdrawal variables

(e.g., present vs. absent at work) and correlates of these withdrawal (e.g., absenteeism) profiles.

Other examples include modeling profiles of changes in recidivism status in addiction research, pro-

files of changes in pass–fail status in skills test in skill acquisition research, profiles of changes in

performance award status (e.g., receiving vs. failing to receive excellence employee award) in cus-

tomer service research, and profiles of changes in organizational status on the annual listing of

‘‘employers of choice’’ (in vs. out of the list) in organizational attractiveness research.

The purpose of this article is to illustrate how mixture latent Markov modeling may be applied to

substantive research to identify population subgroups with varying status change profiles and exam-

ine their correlates, by modeling unobserved heterogeneity in longitudinal qualitative changes.

A real data set on retirees’ postretirement employment statuses (PESs) is used to illustrate the sub-

stantive organizational applications of the technique. Although the mixture latent Markov modeling

technique described here is not new, the main contribution here is to provide a nontechnical intro-

duction that serves as a useful interface between researchers in substantive organizational research

and the abstract technical/mathematical work on this technique (e.g., Kaplan, 2008; Langeheine &

Van de Pol, 2002), in the same spirit as Chan (1998, 2002) reviewed the latent growth modeling

technique and its extensions to organizational research. Although some organizational researchers

may now be familiar with the methodology and substantive applications of standard latent growth

models for assessing changes in continuous variables, many are probably not familiar with using

latent Markov modeling to model longitudinal changes in qualitative status. In addition, mixture

latent Markov modeling helps address several important questions in organizational research regard-

ing longitudinal change noted by Chan (1998) such as whether the change is best represented as pro-

ceeding through one single pathway or through multiple different pathways (p. 425) and whether

there is invariance or difference across groups with respect to the specific facet of change over time

under investigation (p. 428). As Chan as well as others (e.g., Wang & Bodner, 2007) noted, an ade-

quate change assessment methodology should be able to identify subgroups of individuals, which

follow different change patterns.

This article is organized as follows. First, conventional latent Markov modeling is briefly

reviewed to set up the necessary background for introducing the mixture latent Markov model. Next,

model specification, estimation, and selection in the mixture latent Markov modeling framework are

introduced. A research scenario (i.e., identifying and predicting unobserved retiree subpopulations

according to their different PES change patterns) is used throughout to help describe and explain the

technique. A real data set on retirees’ PESs is then used to demonstrate how to apply the mixture

latent Markov modeling method. Finally, advantages, limitations, and recommendations of using

this technique are discussed.

The Latent Markov Modeling

To understand mixture latent Markov modeling, we need to first understand the latent Markov

modeling method, which was first developed by Wiggins (1973). Basically, the method consists

of a single Markov chain, where the current state of an individual/subject is only predicted by the
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previous state of the same individual/subject. In addition, it takes into account the possible measure-

ment error in observed qualitative statuses, assuming the observed qualitative statuses are indicators

of unobservable latent states. Below, we illustrate the latent Markov modeling method using a

research scenario of modeling retirees’ PES change.

The model depicted in Figure 1A represents a conventional latent Markov model of longitudinal

observations for retirees’ PES, measured at four equally spaced time points (PES1, PES2, PES3,

and PES4). Each observation of the PES takes a dichotomized value (i.e., 0 ¼ not being employed

vs. 1 ¼ being employed). The latent Markov model can be written as

Pghij ¼ d1a � r1ðgjaÞ � t12ðbjaÞ � r2ðhjbÞ � t23ðcjbÞ � r3ðijcÞ � t34ðdjcÞ � r4ðjjdÞ; ð1Þ

where Pghij is the model-based expected proportion of individuals in the studied population

(i.e., retirees) in cell (g, h, i, and j). The subscripts associated with P (i.e., g, h, i, and j) are the

observed categorical values for Times 1, 2, 3, and 4, with g ¼ 1 . . . G, h ¼ 1 . . . H, i ¼ 1

. . . I, and j ¼ 1 . . . J. In the current research scenario, given that there are only two possible

employment statuses at each time point, G ¼ H ¼ I ¼ J ¼ 2. Among the subscripts at the right side

of the equation, a, b, c, and d denote the categorical latent employment states indicated by the

observed employment statuses at Times 1, 2, 3, and 4, respectively, with a ¼ 1 . . . A, b ¼ 1

. . . B, c ¼ 1 . . . C, and d ¼ 1 . . . D. The parameter d1a represents the proportion of individuals

at Time 1 corresponds to a latent distribution of A latent employment states. The linkage of the latent

states to the observed categorical values is represented by the response probability (or reliability

probability) r, indicating the extent to which observed qualitative statuses accurately reflect the

unobservable latent employment state. The interpretation of r, thus, is analogous to that of factor

loadings in factor analysis. Accordingly, r1(g|a) represents the response probability associated with

the observed value g given membership in latent state a, linking the observed qualitative status to the

latent state. The remaining response probabilities (i.e., r2(h|b), r3(i|c), and r4(j|d)) are similarly inter-

preted. When the measurement reliability is perfect for PES measures at all time points, r1(g|a) ¼
r2(h|b) ¼ r3(i|c) ¼ r4(j|d) ¼ 1. In other words, when the PES measures enjoy perfect reliability, the

latent employment states will take the exact same distribution of the observed employment statuses.

Figure 1. A, An illustration of the conventional latent Markov model for longitudinal categorical measures of
employment status; B, An illustration of the mixture latent Markov model including predictors of the latent
class variable. PES ¼ postretirement employment status.
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The parameters t12(b|a), t23(c|b), and t34(d|c) denote the transition probabilities between latent

employment states. Specifically, the parameter t12(b|a) denotes the transition probability from Time

1 to Time 2 for those retirees in latent employment state b given they were in latent employment

state a at Time 1. The parameter t23(c|b) denotes the transition probability from Time 2 to Time 3

for those retirees in latent employment state c given they were in latent employment state b at Time

2. Finally, the parameter t34(d|c) denotes the transition probability from Time 3 to Time 4 for those

retirees in latent employment state d given they were in latent employment state c at Time 3. In

applications of latent Markov modeling, these transition probabilities are usually the focus of inter-

est, because they represent how likely individuals change their qualitative statuses from one time

point to the next time point.

When estimating the latent Markov model, the only parameters that are important to specify are

the response probabilities (i.e., rs). Specifically, the response probabilities are typically constrained

to be invariant over time, because the measurement error of the categorical status measure is

considered to be equal over time (Langeheine & Van de Pol, 2002). All the rest of parameters

(i.e., d and ts) can be freely estimated using the maximum likelihood estimation method. More

extensive mathematical introductions to the latent Markov modeling with examples can be found

in Langeheine and Van de Pol (2002) and Mooijaart (1998).

Mixture Latent Markov Modeling

Mixture modeling generally refers to modeling with categorical latent variables that represent mix-

tures of subpopulations where population membership is not known but is empirically derived from

the data. In mixture latent Markov modeling, unobserved heterogeneity in the change of a qualitative

status over time is captured by a categorical latent variable. Specifically, mixture latent Markov

modeling relaxes the single population assumption of conventional latent Markov modeling method

to allow for simultaneously estimating several latent Markov chains that correspond to multiple

unobserved subpopulations. Using the above research scenario example of modeling retirees’ PES

change, the application of mixture latent Markov modeling assumes that there exist multiple unob-

served retiree subpopulations (the subpopulation membership is unknown for each retiree), which

correspond to different PES change patterns. This analysis is accomplished by estimating latent

Markov classes, which are represented by a categorical latent variable, for retirees. The following

sections describe the model specification, model estimation, and model selection in mixture latent

Markov modeling.

Mixture Latent Markov Model Specification

Consider a categorical latent variable c representing the unobserved subpopulation membership for

each retiree. Assuming that K unobserved retiree subpopulations exist in the longitudinal data of

PES, for a given retiree, c could be any number from 1 to K, representing the membership in the

Kth latent retiree subpopulation. Here, c is referred to as a latent class variable. As such, mixture

latent Markov modeling specifies a separate latent Markov chain for each of the K latent retiree sub-

populations simultaneously. This mixture latent Markov model can be written as

Pghij¼ pK�d1ajK�r1ðgjaKÞ�t12ðbjaKÞ�r2ðhjbKÞ�t23ðcjbKÞ�r3ðijcKÞ�t34ðdjcKÞ�r4ðjjdKÞ ð2Þ

where pK denotes the proportion of retirees in the Kth retiree subpopulation. The remaining para-

meters (i.e., d, rs, and ts) are interpreted in the same way as in Equation 1, with the exception that

they are conditioned on membership in Kth latent retiree subpopulations. In other words, all para-

meters other than pK may differ across different latent retiree subpopulations. As a result, the pro-

portions of individuals that belong to different latent employment states at Time 1 (denoted by d1a)
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may be different in different latent retiree subpopulations. For example, the majority of retirees may

be working for pay at Time 1 in one subpopulation, whereas in another subpopulation, the majority

of retirees may not be working at all at Time 1. Similarly, the probabilities for individuals to change

their employment statuses from one time point to the next time point (denoted by t parameters) may

also depend on the retirees’ subpopulation membership. In one subpopulation, retirees may remain

being employed across all time points; whereas in another subpopulation, retirees may change their

employment statuses frequently across different time points. An illustration of this mixture latent

Markov model is shown in Figure 1B.

Furthermore, the above mixture latent Markov model can be extended to include time-invariant

predictors. Consider incorporating a predictor x that influences c (i.e., unobserved retiree subpopu-

lation membership) as illustrated in Figure 1B. To estimate the predictive effect of x on the latent

retiree subpopulation membership c, a multinomial logistic regression model for K latent retiree sub-

populations can be constructed

P ci ¼ Kjxið Þ ¼ eaKþbK xK

PK
c¼1 eacþbcxi

; ð3Þ

where a denotes the logit intercept and b denotes the logit slope. Assuming the Kth latent retiree

subpopulation is the reference class in this multinomial logistic regression model with coefficients

standardized to 0 (i.e., aK ¼ 0, bK ¼ 0), it gives

P ci ¼ 1jxið Þ ¼ 1

1þ e� a1þb1xið Þ ; ð4Þ

where b1 is the increase in the log odds of being in the first latent retiree subpopulation versus being

in the Kth latent retiree subpopulation for a unit increase in x. Suppose that x is a dichotomous vari-

able with 0 for female and 1 for male, it follows that eb1 is the odds ratio for being in the first latent

retiree subpopulation versus being in the Kth latent retiree subpopulation when comparing males to

females. For example, b1 ¼ 1 implies that the odds of being in the first latent retiree subpopulation

versus being in the Kth latent retiree subpopulation is e1¼ 2.72 times higher for males than females.

Mixture Latent Markov Model Estimation

As in most other types of latent variable modeling, the mixture latent Markov model can be

estimated using the maximum likelihood approach. Specifically, an expectation maximization

(EM) algorithm is used. In the E step, data on the latent class variable c (e.g., unobserved retiree

subpopulation membership in the above example) are considered missing. Therefore, the conditional

probability of individual i belonging to the latent class K (i.e., the posterior probability of group

membership) can be estimated. In the M step, this posterior probability for each individual is inserted

in the complete-data log likelihood function. Then, the M step maximizes this function with respect

to the mixture parameter (i.e., p), the latent Markov parameters (i.e., d, rs, and ts), and the logistic

regression coefficients of x on latent classes (i.e., a and b). Interested readers may refer to Muthén

and Shedden (1999) for further technical aspects of this EM algorithm.

In mixture latent Markov modeling estimation, missing data in observed longitudinal categorical

variables (e.g., PES measures) can be modeled using full information maximum likelihood (FIML)

method with the assumption that the data are missing at random (MAR; Little & Rubin, 1987).

Newman (2003) showed that FIML outperformed listwise deletion, pairwise deletion, and single

imputation and provided better standard error estimates for longitudinal data modeling. However,

the MAR assumption is rarely testable or tenable (Newman, 2003). There has also been little agree-

ment on how to model the missing data when they exist in predictors of the latent class variable
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(Wang & Bodner, 2007). One method is to apply the same FIML solution to model the missing val-

ues in the predictors. However, it imposes normality assumptions about the predictors that are often

violated in empirical research, especially when the predictors are categorical (Muthén, Jo, & Brown,

2003). Furthermore, participants belonging to different latent or observed subgroups may show dif-

ferential attrition rate that cannot be predicted (e.g., some subgroups of retirees in the current exam-

ple may be more likely to die before the end of the study than others, leading to more missing values

in Time 4). Therefore, modeling them with the same distribution assumptions as FIML does may be

incorrect.

Mixture Latent Markov Model Selection

To evaluate the absolute fit between the mixture latent Markov model and the data, a classic Pearson

chi-square test can be performed. It assesses the model fit by comparing the observed frequency dis-

tributions to the model-derived frequency distributions in each cell of the longitudinal qualitative

status contingency table (i.e., the GHIJ contingency table). In the current research scenario of mod-

eling retirees’ PES change, this contingency table has 16 cells (i.e., 24). This classic Pearson chi-

square test follows:

w2 ¼
X

ghij
Oghij �Mghij

� �2
.

Mghij

h i
; ð5Þ

where Oghij are the observed frequencies in the cells in the longitudinal qualitative status contin-

gency table and Mghij are the model-based frequencies in those cells. A nonsignificant chi-square

statistic suggests that the model-based frequency distributions are not significantly different from

the observed frequency distributions in the contingency table, indicating that the model fits to the

data very well. However, when missing values are modeled with likelihood-based estimation

procedures (e.g., FIML) the Pearson chi-square statistic will not be available, because the observed

frequencies in the cells cannot be determined.

To select the optimal mixture latent Markov model that best fits the observed longitudinal cate-

gorical data, the number of latent classes needs to be determined. In this case, using the conventional

likelihood ratio test (i.e., the restricted chi-square test) comparing a K-1 and a K-class model is not

appropriate, because the likelihood ratio statistic does not follow a chi-square distribution when the

null hypothesis of K-1 classes is true (McLachlan & Peel, 2000). Therefore, the generally accepted

approach to determine the optimal number of latent classes is to compare the information criteria

among mixture latent Markov models with different number of latent classes. These information cri-

teria may include Akaike’s information criterion (AIC; Akaike, 1974), Bayesian information criter-

ion (BIC; Schwartz, 1978), and sample size–adjusted BIC (SSABIC; Sclove, 1987). Usually, the

smaller the information criteria, the better is the model fitting to the data. It should be noted that

recent research in the area of latent mixture modeling has made significant progress in developing

decision rules in selecting latent mixture models with optimal number of latent classes, such as the

Lo-Mendell-Rubin test (Lo, Mendell, & Rubin, 2001) and the parametric bootstrapped likelihood

ratio test (Nylund, Asparouhov, & Muthén, 2007). However, at this point, these tests can only be

applied to latent mixture models containing only one latent class variable. Their utility with latent

mixture models containing more than one latent class variables (e.g., mixture latent Markov models)

is still unclear.

Same model selection can also be informed by the latent classification accuracy as measured by

entropy (Jedidi, Ramaswamy, & Desarbo, 1993), which ranges from 0.00 to 1.00 with higher values

indicating better classification quality. In essence, this index represents how clearly separable dif-

ferent latent classes are based on individuals’ posterior probabilities for different classes. According

to Muthén and Muthén (2000), when entropy is high, it means that the average posterior probability
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for each class for individuals whose highest probability is for that class is considerably higher than

the average posterior probabilities for the other classes for those individuals, indicating unambigu-

ous classification of each individual. When entropy is low, it means that the average posterior prob-

ability for each class for individuals whose highest probability is for that class is similar to the

average posterior probabilities for the other classes for those individuals, indicating high levels of

uncertainty in the classification of each individual. In previous research, entropy values higher than

0.80 have been viewed as suggesting good classification (e.g., Muthén, 2004; Wang, 2007).

However, it should be cautioned that most of the above criteria (especially AIC and BIC) are

extremely sensitive to sample size and asymptotically these indices favor very highly parameterized

(i.e., low parsimony) models (e.g., Hu & Bentler, 1998, 1999). In addition, when the sample size is

large, researchers may want to use model selection criteria that are less affected by the sample size

(e.g., entropy; SSABIC) than the sample-dependent information criteria (i.e., AIC and BIC) for

deciding among competing models with different numbers of latent classes (Yang, 1998). As such,

we recommend researchers to pay attention to all these indices as well as the substantive research

context in which the mixture latent Markov modeling technique is applied when selecting the best

mixture latent Markov model. Specifically, it is important to decide whether a particular model

makes theoretical sense by explicating the conceptual meanings of the latent Markov chains that cor-

respond to the subpopulations identified and evaluating the empirical evidence of convergent valid-

ity for the subpopulations by examining the covariates of these subpopulations. For example, in a

research study on employee withdrawal behaviors identifying distinct subpopulations of employees

with varying status change profiles in absenteeism, the subpopulations should be empirically related

to relevant covariates (e.g., supervisory ratings of job performance) so that subpopulations with

more ‘‘severe’’ absenteeism profiles should also be associated with more negative supervisory rat-

ings. Several researchers (e.g., Dayton & Macready, 2002; Muthén, 2004) have pointed out that

incorporating additional variables (e.g., covariates) into a mixture model has great potential to alter

conditional probabilities of class membership. We recommend that researchers incorporate addi-

tional variables (covariates/predictors) into their models throughout the process of class enumeration

to warrant accurate estimation of conditional probabilities for class membership.

In summary, the mixture latent Markov modeling relaxes the single population assumption of

conventional latent Markov modeling by estimating a latent class variable for different longitudinal

change patterns in categorical statuses corresponding to unobserved subpopulations. Furthermore,

predictors of this latent class variable can be incorporated simultaneously in the model estimation

to predict the unobserved heterogeneity in the population, which provides a good way to test theories

regarding the unobserved subpopulations. Empirically, using mixture latent Markov modeling could

efficiently summarize the large longitudinal qualitative change contingency table (e.g., in the current

research scenario there are 16 possible transition profiles) into several major transition patterns,

which provides us parsimonious description and explanation to the data (Cudeck & Henly, 2003).

It also accounts for the measurement errors associated with observed measures, which may reveal

that two retirees with different observed transition patterns may indeed have high probabilities to

follow the same latent transition patterns. In addition, the observed patterns of qualitative transitions

are rarely evenly distributed, rendering sparse observations for certain observed transition patterns

(Magidson & Vermunt, 2004). It is particularly useful to apply mixture latent Markov modeling to

this situation to identify whether the sparse observations represents a unique transition pattern or

merely just an artificial due to lack of measurement reliability. Furthermore, when the research goal

is to examine predictors of different transition patterns, using mixture latent Markov modeling is

better than conducting discriminant analysis for all the observed transition patterns. This is because,

first, when there are a lot of different observed transition patterns, large number of orthogonal dis-

criminant functions will be needed to sufficiently discriminate these patterns. Subsequently, the

direct relationships between the predictive variables included in the discriminant functions and the
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observed transition patterns will be hard to identify, because these variables are included in all

discriminant functions. Second, the discriminant analysis does not perform well when only a small

number of observations exist in some categories. Previous Monte Carlo research has shown that at

least 40–70 observations are needed in each observed group/class to warrant achieving reliable

discriminant functions (e.g., Barcikowski & Stevens, 1975). Third, discriminant analysis is not able

to take into account the measurement error in the observed qualitative status. Therefore, using mix-

ture latent Markov modeling will yield more parsimonious and direct profiling of the subgroups

(e.g., retiree subgroups), which correspond to different latent transition patterns.

Numerical Demonstration

In this section, the mixture latent Markov model is applied to a real data set to numerically demon-

strate the analytical framework delineated above. Specifically, we used the data from Waves 1–5

(contains data collected in 1992, 1994, 1996, 1998, and 2000) of the Health and Retirement Study

(HRS; Juster & Suzman, 1995). Related to the current research question, we selected a sample of

retirees who were not retired at the Wave 1 data collection, but considered themselves as retired

in Wave 2 and later data collection periods, resulting in a sample size of 994. The time interval

between successive waves was 2 years. Retirees’ PESs from Wave 2 to Wave 5 (i.e., Time 1 to Time

4 in Figure 1B) were used as the observed longitudinal categorical variables that manifested the qua-

litative status changes across different time points. Retirees’ years of education (measured at Wave 1

of HRS) were included as the potential predictor of the unobserved subpopulations, which may exist

in corresponding to different longitudinal change patterns in qualitative employment status.

To guide the search for the latent subpopulations and the transition patterns of the latent change in

retirees’ PESs, we rely on theory and previous findings in the retirement research literature. The

dynamic perspective of postretirement employment has suggested that heterogeneity exists in retir-

ees’ postretirement employment patterns that are influenced by retirees’ individual attributes, pre-

vious experience, and socioeconomic context (e.g., Wang, Adams, Beehr, & Shultz, 2009; Wang

et al., 2008). Specifically, this literature has suggested three qualitative change patterns of retirees’

PES change. Accordingly, retirees may be distinguished into three unobserved subgroups. The first

subgroup of retirees may never be employed after their retirement (e.g., Shultz, 2003). The second

subgroup of retirees is always employed after their retirement (e.g., Kim & Feldman, 2000). Finally,

the third subgroup of retirees may transition in or out employment across different time points after

their retirement (e.g., Wang et al., 2008), but the general tendency for them is to transition from

being employed to not employed in conforming to the social norm of retirement (Wang et al.,

2009). Furthermore, previous studies have found that education is an important variable that predicts

retirees’ PES (e.g., Shultz, 2003). Specifically, after retirement, educated individuals have better

preparation to provide further contribution to their organization or industry because of their profes-

sional knowledge and/or skills. In addition, they might continue to work in their career field by enga-

ging in consulting roles. Therefore, we hypothesize that retirees with higher education may be more

likely to be employed consistently after their retirement, whereas retirees with lower education may

be more likely to stay unemployed after their retirement. As such, in this numeric demonstration, we

also included retirees’ years of education as a covariate to predict the latent subgroup membership.

It should be noted that the latent qualitative change patterns we hypothesized in this numeric

demonstration were quite similar to the qualitative change patterns specified in ‘‘mover–stayer’’

models that were typically examined in developmental psychology research (e.g., Blumen, Kogan,

& McCarthy, 1955; Goodman, 1961; Mooijaart, 1998; Vermunt, Tran, & Magidson, 2008). In the

mover–stayer model, there exists a latent class of individuals who transition across different devel-

opment stages over time (movers) and a latent class that does not transition across stages (stayers).

For example, in the context of reading development, the stayers are those who never move beyond
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mastery of letter recognition (Kaplan, 2008). The key difference between our hypothesized model

and the typical ‘‘mover–stayer’’ model is that instead of hypothesizing only one ‘‘stayer’’ class, we

hypothesized two ‘‘stayer’’ classes: one contained retirees who were employed at all time points

after retirement (i.e., ‘‘stayers’’ who were always employed) and the other contained retirees who

were never employed at all time points after retirement (i.e., ‘‘stayers’’ who were never

employed). This is due to the difference of our theoretical foundation in comparison to the typical

developmental psychology research that uses ‘‘mover–stayer’’ model. In developmental psychol-

ogy research, when using ‘‘mover–stayer’’ model, the typical assumption is that all participants

start in the same qualitative status (i.e., lack of certain type of development). Thus, the latent tran-

sition estimated is unidirectional (i.e., from lack of certain type of development to achieve that

type of development), which could not be reversed. However, in our research scenario, the

employment status could change from ‘‘not employed’’ to ‘‘employed,’’ and vice versa, thus

manifesting two possible qualitative statuses at the starting point of the longitudinal observation.

In this sense, our hypothesized three-class model is more general than the traditional ‘‘mover–

stayer’’ model in terms of accommodating different transition directions as well as multiple

qualitative statuses at the starting point.

Mplus 5.2 (Muthén & Muthén, 2008) was used to analyze the real data set. The Mplus program

for the selected three-class mixture latent Markov model with the x variable (i.e., years of education)

incorporated is included in Appendix (Table A1) to provide an idea on how mixture latent Markov

modeling is executed in actual programs. Another program that is also good to estimate these kinds

of models is the Latent GOLD program (Vermunt & Magidson, 2005). As we recommended earlier,

we included the predictor of latent subpopulations (i.e., years of education) in all mixture latent Mar-

kov models we tested throughout the process of class enumeration to warrant accurate estimation of

conditional probabilities for class membership.

Selecting Mixture Latent Markov Model With Optimal Number of Latent Classes

Before we started the mixture latent Markov modeling, we first inspected the frequencies of

observed longitudinal qualitative change patterns. These frequencies are presented in Table 1. Spe-

cifically, 366 retirees (36.82%) were never employed after they retired, 121 retirees (12.17%) were

always employed after they retired, and 255 retirees (25.55%) transitioned in or out employment at

least once during the four time points (i.e., movers). Among all potential ‘‘mover’’ patterns, some

had very sparse observations (0.20%–3.02%). Therefore, it will be useful to use the mixture latent

Markov modeling to summarize these observed transition patterns. Furthermore, it is difficult to

directly interpret these observed frequencies, because 253 retirees (25.45%) did not provide their

employment status at least once during the four data collection time points. To model these missing

values, we used FIML method with the MAR assumption to conduct subsequent mixture latent Mar-

kov modeling. As we mentioned earlier, the Pearson chi-square statistics are not available to eval-

uate the model fit when likelihood-based estimation procedures are used to model missing values. In

addition, because we did not have specific hypotheses regarding the response probability change

across time, we only specified one time-invariant response probability for each observed employ-

ment status. In other words, we specified that the probability for the observed ‘‘not employed’’

response to accurately reflect the unobserved employment status might be different from the prob-

ability for the observed ‘‘employed’’ response to accurately reflect the unobserved employment

status.

We tested our current hypotheses by comparing a series of mixture latent Markov models to our

hypothesized three-class mixture latent Markov model. Information criteria and entropy indices for

these models are presented in Table 2. Specifically, we first fit one-class latent Markov model (i.e.,

the conventional latent Markov model) to the data. Then, a two-class ‘‘mover–stayer’’ mixture latent
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Markov model was estimated with one latent class being specified as a ‘‘stayer’’ class and the other

latent class being specified as a ‘‘mover’’ class. Specifically, for retirees who belong to the ‘‘stayer’’

class, their employment statuses were modeled as not changing across different time points (i.e., the

transition probabilities were fixed to 0). Nevertheless, their employment statuses at the starting time

point were allowed to be freely estimated. In other words, these ‘‘stayers’’ were either employed at

all time points or never employed at all time points. For retirees who belong to the ‘‘mover’’ class,

their employment statuses were modeled to freely transition in or out employment across different

time points. This two-class model resulted in smaller information criteria compared to the one-class

model (see, Table 1). In addition, the entropy (0.77) indicates acceptable classification accuracy

based on this two-class model.

The hypothesized three-class mixture latent Markov model was then estimated by including two

latent ‘‘stayer’’ classes and one ‘‘mover’’ class. One ‘‘stayer’’ class was modeled as containing retirees

Table 1. Observed Employment Status Change Patterns in the Current Sample

Longitudinal Employment Pattern N Percentage of the Sample

0000 366 36.82
0001 15 1.51
0010 19 1.91
0100 22 2.21
1000 46 4.63
0011 20 2.01
0101 2 0.20
0110 10 1.01
1010 3 0.30
1100 30 3.02
1001 4 0.40
0111 42 4.23
1011 11 1.11
1101 10 1.01
1110 20 2.01
1111 121 12.17
Total 741 74.55

Note: ‘‘0’’ ¼ not employed, ‘‘1’’ ¼ employed (e.g., ‘‘0000’’ denotes the longitudinal employment pattern that the retirees never
worked after their retirement; ‘‘0101’’ denotes the longitudinal employment pattern that the retiree did not work at time
1 and time 3 data collection, but worked at time 2 and time 4 data collection). 253 retirees (25.45%) were not included
in this table because they had missing employment status in at least one of the four time points.

Table 2. Fit Indices, Entropy, and Model Comparisons for Estimated Mixture Latent Markov Model

Mixture Latent Markov
Models Log Likelihood

Number of
Free Parameters AIC BIC SSABIC Entropy

One class �4,154.36 26 8,360.71 8,488.16 8,405.58 –
Two class �1,639.92 15 3,309.84 3,389.43 3,341.78 0.77
Three class �1,637.06 13 3,300.12 3,363.84 3,322.55 0.77
Four class �1,633.12 18 3,302.24 3,397.75 3,340.56 0.74
Five class �1,629.54 23 3,305.08 3,417.82 3,344.71 0.72

Note: N ¼ 994. AIC ¼ Akaike information criterion; BIC ¼ Bayesian information criteria; SSABIC ¼ sample size–adjusted
Bayesian information criteria. Years of education were included in each of these models as a predictor.
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who were employed at all time points after retirement (i.e., stayers who were always employed). This

was done by specifying retirees’ latent employment statuses at Time 1 to be ‘‘employed’’ and fixing

the transition probabilities to be zero. The other ‘‘stayer’’ class was modeled as containing retirees who

were never employed at all time points after retirement (i.e., stayers who were never employed). This

was done by specifying retirees’ latent employment statuses at Time 1 to be ‘‘not employed’’ and fix-

ing the transition probabilities to be 0. The ‘‘mover’’ class was specified as the same in the previous

two-class model. This three-class mixture latent Markov model resulted in smaller information cri-

teria compared to the one-class model and the two-class ‘‘mover–stayer’’ model (see, Table 2), indi-

cating good model fit improvement over the two-class model. In addition, the entropy (0.77) of this

three-class model did not differ from the entropy in the two-class model, indicating similar level of

classification accuracy was achieved by this three-class model.

Table 3 presents the probability estimates of the hypothesized three-class mixture latent Markov

model. Specifically, three retiree subpopulations were identified according to longitudinal change

patterns of retirees’ PES: 43.1% of retirees (N ¼ 428) in the sample were classified into the latent

class for ‘‘stayers’’ who were never employed after their retirement; 14.8% of retirees (N ¼ 147)

were classified into the latent class for ‘‘stayers’’ who were always employed after their retirement;

and 42.2% of retirees (N¼ 419) were classified into the latent class for ‘‘movers’’ who changed their

previous employment status at some point during the span of the study. Furthermore, by examining

the transition probabilities for retirees who were classified into the ‘‘mover’’ class (see, Table 2), it

seems that over time, retirees who were not employed at previous time point were more likely to stay

not employed. For example, the probabilities for staying in the ‘‘not employed’’ status were quite

high (i.e., 85.6%, 92.9%, and 97.6%) over the three successive transition periods (i.e., Time 1–Time

2, Time 2–Time 3, and Time 3–Time 4). However, there were also high probabilities for retirees who

were employed at previous time point to transition out their employment. Specifically, the probabil-

ities for retirees to transition out their employment were 78.0%, 80.2%, and 82.6% over the three

successive transition periods. These findings support our hypothesis that the general transition

tendency for retirees in the ‘‘mover’’ class is from being employed to not employed.

After fitting the three-class mixture latent Markov model, a four-class model was estimated by

adding one latent class to the three-class model. Specifically, the added class was specified as

another ‘‘mover’’ class, which takes the opposite transition tendency (i.e., transiting from not

Table 3. Transition Probabilities for the Three-Class Mixture Latent Markov Model

Retiree Subpopulations (Rows) by Time 1 Employment Status (Columns)
Proportion of Total
Sample (N ¼ 994)

Not employed at Time 1 Employed at Time 1
Stayers—never employed 100.0% 0.0% 43.1%
Stayers—always employed 0.0% 100.0% 14.8%
Movers 63.7% 36.3% 42.2%
Transition probabilities for movers

Not employed at Time 2 Employed at Time 2
Not employed at Time 1 85.6% 14.4%
Employed at Time 1 22.0% 78.0%

Not employed at Time 3 Employed at Time 3
Not employed at Time 2 92.9% 7.1%
Employed at Time 2 19.8% 80.2%

Not employed at Time 4 Employed at Time 4
Not employed at Time 3 97.6% 2.4%
Employed at Time 3 17.4% 82.6%

Note: Transition probabilities for the two ‘‘stayer’’ classes are not presented because they are all zeros.
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employed to employed in postretirement) as we hypothesized for the ‘‘mover’’ class. This additional

‘‘mover’’ class was modeled as containing retirees who were not employed at the beginning of their

retirement but transition to employment in the later time points. By estimating this four-class model

and comparing it to the hypothesized three-class model, it helps us to determine whether the

‘‘mover’’ class in the three-class model successfully summarized the general transition tendency

among the ‘‘movers.’’ This four-class model resulted in larger information criteria compared to the

three-class mixture latent Markov model and the entropy decreased a little to 0.74 (see, Table 2). In

addition, by examining the classification results of retirees based on their most likely latent class

patterns, very few retirees (N ¼ 7; i.e., 0.7% of the sample) were classified to this newly added

‘‘mover’’ class. In other words, it seems that there was not a systematic transition pattern from ‘‘not

employed’’ to ‘‘employed’’ status over time. Therefore, the hypothesized three-class model was pre-

ferred over this four-class model.

Previous authors (e.g., Magidson & Vermunt, 2004; Nyland et al., 2007) have pointed out the

possibility that keeps adding additional latent classes may later reduce information criteria values

further. Therefore, to make sure that the three-class model we hypothesized was the best-fitting

model, we also estimated a five-class model by adding one more ‘‘mover’’ class, which allowed

retirees to freely transition in or out employment across different time points to the previous

four-class model. This five-class model yielded larger information criteria than the three-class

model did and its entropy further decreased to 0.72. Inspecting classification results of retirees based

on their most likely latent class patterns, no retirees were classified to this newly added ‘‘mover’’

class. Therefore, we conclude that this five-class model did not improve our explanation of the cur-

rent data and it is reasonable to retain the three-class model as optimal mixture latent Markov model.

Predictive Effect of Retirees’ Years of Education

Table 4 presents estimated logistic coefficients and corresponding standard errors of the years of

education in predicting the latent class variable in the selected three-class mixture latent Markov

model. Years of education were significantly and negatively related to the log odds of being in the

‘‘stayers who were never employed’’ class versus being in the ‘‘mover’’ class (b1 ¼ �0.12, p < .05).

This suggests that when a retiree had longer years of education, there is a lower probability for that

retiree to be classified into the ‘‘stayers who were never employed’’ class than to be classified into

the ‘‘mover’’ class (the corresponding odds ratio was e�0.12 ¼ 0.88). In addition, years of education

were significantly and positively related to the log odds of being in the ‘‘stayers who were always

employed’’ class versus being in the ‘‘mover’’ class (b2 ¼ 0.10, p < .05). This suggests that when a

retiree had longer years of education, there is a higher probability for that retiree to be classified into

the ‘‘stayers who were always employed’’ class than to be classified into the ‘‘mover’’ class (the cor-

responding odds ratio was e0.10 ¼ 1.10). Correspondingly, among the three subpopulations, retirees

who were classified into the ‘‘stayers who were always employed’’ class had the longest years of

Table 4. Logistic Coefficient Estimates for the Predictor on the Latent Class Variable

Latent Classes

Stayers—Never Employed Stayers—Always Employed

Estimates SE Estimates SE

Years of education �0.12* 0.05 0.10* 0.05

Note: N ¼ 994. The reference class in this multinomial estimation is the ‘‘mover’’ class.
* p < .05.
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education (M ¼ 13.92, SD ¼ 2.81); retirees who were classified into the ‘‘mover’’ class had the

second longest years of education (M ¼ 12.47, SD ¼ 3.15); whereas retirees who were classified

into the ‘‘stayers who were never employed’’ had the shortest years of education (M ¼ 11.14, SD

¼ 2.72). Taken as a whole, these findings support a priori hypothesis, indicating that retirees’ levels

of education were related to the longitudinal patterns of their postretirement employment.

Response Probabilities of the Observed Employment Statuses

As we noted earlier, in the current mixture latent Markov modeling, we only specified one

time-invariant response probability for each observed employment status, because we did not have

specific hypotheses regarding the response probability change across time. In the fitted three-class

mixture latent Markov model, the response probability of the observed ‘‘employed’’ status was

88.03% (z ¼ 4.46, p < .01), and the response probability of the observed ‘‘not employed’’ status was

83.34% (z ¼ 2.48, p < .05). These estimates suggest that both observed ‘‘employed’’ and ‘‘not

employed’’ responses had good reliabilities in reflecting their corresponding latent employment sta-

tuses. Nevertheless, it should be noted that more flexible structures on the response probabilities

(e.g., linearly increasing or decreasing reliability over time) could be tested in latent mixture Markov

models, as far as there is good theoretical basis to hypothesize those reliability structures.

Discussion

The purpose of this article was to introduce the mixture latent Markov modeling technique to orga-

nizational research and illustrate its substantive applications. The contribution of this technique is

best understood in terms of how it helps answer important questions in longitudinal analysis of qua-

litative changes in latent status, which cannot be answered by standard latent growth modeling or

other conventional techniques that presuppose longitudinal quantitative changes in a continuous

variable.

As demonstrated in the numerical example from the HRS data set, mixture latent Markov mod-

eling answers the question regarding longitudinal qualitative status change patterns by identifying

distinct coexisting latent Markov chains in the sample. In the HRS data set example, there were three

latent Markov chains identified, which corresponded to a subgroup of retirees (43.1% of the

sample), who were never employed again after their retirement; a subgroup of retirees (14.8% of

the sample), who were always employed after their retirement; and a subgroup of retirees (42.2%
of the sample), who moved in and out employment after their retirement. This demonstration illus-

trates how the mixture latent Markov modeling technique may be used to identify unobserved sub-

populations with different longitudinal qualitative status changes. The HRS data example also shows

how mixture latent Markov modeling tests the predictors of subpopulation membership. Specifi-

cally, the individual’s years of education was incorporated in the model estimation and was found

to be a significant predictor of the odds of being a member in the subpopulation with a ‘‘stayer’’

pattern versus being a member in the subpopulation with a ‘‘mover’’ pattern. Correspondingly, on

average, retirees who were classified into the ‘‘stayers who were always employed’’ class had the

longest years of education, whereas retirees who were classified into the ‘‘stayers who were never

employed’’ had the shortest years of education.

It should be noted that although we used a research scenario of modeling retirees’ PES changes to

illustrate how to conduct mixture latent Markov modeling, the technique can be easily applied to

other substantive areas in the organizational research and the unit of observation in the status change

may be at different levels of analysis such as the individual, group, or organization. Some examples

include modeling status profiles (i.e., longitudinal changes in discrete status) with respect to employ-

ment within versus outside a specific industry throughout the individual’s career trajectory,
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promotion versus no promotion throughout the employee’s tenure in an organization, pass versus fail

in a regular skills test throughout a practice period, award versus no award (or in vs. out of a select

listing) throughout a period of time for a sample of individuals, groups, or organizations.

Limitations and Recommendations of Using Mixture Latent Markov Modeling

Despite its advantages, the mixture latent Markov modeling technique has several limitations and

therefore cautions should be exercised in its application to substantive research. First, one statistical

issue in its model estimation that warrants caution is that multiple local maxima may exist for the

complete-data log likelihood function (McLachlan & Peel, 2000). In other words, with different

starting values, different maximizing results may be obtained for the complete-data log likelihood

function. Therefore, it is recommended that different sets of starting values are used to carry out all

potential local maxima for a given data set and a given model. In Mplus 5.2, this can be accom-

plished by estimating the model with a large number of sets of random-generated starting values and

then selecting the model with the starting values that have the highest log likelihood values as the

best estimation solution.

Second, various caveats need to be highlighted in model selection. Although the modeling tech-

nique involves empirically deriving the unobserved subpopulations from the data, model selection

needs to be theory driven as opposed to completely data driven in an atheoretical manner. Model

selection that is solely based on empirical results (i.e., in a post hoc manner) may lead to selecting

statistically fitting models that are in fact fitting the sample well due to capitalization on chance

(Cudeck & Henly, 2003; MacCallum, Roznowski, & Necowitz, 1992; Muthén, 2003; Rindskopf,

2003). Therefore, although several methods and indices (e.g., Pearson chi-square, information cri-

teria, and entropy) are available to compare mixture latent Markov models with different numbers

of classes or different parameter values, the best way to guide the optimal model selection is to test

different models following theory-based hypotheses (i.e., a priori hypothesis). In other words,

researchers should form theory-based expectation regarding the number of latent classes and more

importantly the specific transition pattern for each latent class. Following this approach, researchers

could better understand the mixture latent Markov models generated in the model selection process

and identify more meaningful solutions. This point has been made very clear in previous research

that discussed model selection and class enumeration issues in growth mixture modeling (e.g.,

Bauer & Curran, 2003a, 2003b; Wang & Bodner, 2007). Both Bauer and Curran (2003b) and

Muthén (2004) argued that the selection of models in mixture modeling needs to have adequate the-

oretical grounding or conceptual bases and it is not simply a matter of statistical significance of the

increment model fit in nested model comparisons. They also argued that with theoretical guidance,

even when several models have similar statistical results, researchers would still be able to retain the

model that is most meaningful and logical. Therefore, we are biased in favor of using mixture latent

Markov model in a confirmatory manner rather than an exploratory manner, such that theories of

coexisting latent Markov chains can be evaluated by systematically testing different theory-

derived hypotheses about specific mixture latent Markov models representing competing ways of

describing and explaining the longitudinal data. Our numeric demonstration provides a useful exam-

ple that incorporates theoretical-driven hypotheses in comparing and selecting optimal models.

Furthermore, in addition to the lack of a gold standard in determining the number of latent sub-

populations, another issue in model selection in mixture latent Markov modeling is that there is no

indication of the stability of the identified latent subpopulations, including the number of subpopu-

lations, the relative proportions, and the strength and pattern of prediction by covariates. As such,

models with different numbers of subpopulations need to be examined to establish the sensitivity

of the latent classification (e.g., the robustness of the identified latent subpopulations). In addition,

inspection of the estimation accuracy by examining standard error estimates of the parameter
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estimates may be helpful as well. It is also important to replicate the findings obtained in the latent

mixture Markov model in a hold-out sample for purpose of cross-validation, especially when the

research goal is to make inferences beyond the sample at hand (Wang & Bodner, 2007).

Finally, similar to structural equation modeling, mixture latent Markov modeling is a statistical

procedure that is based on large samples and should not be employed with small samples. This is

because having sparse cells (i.e., few observations) in the longitudinal contingency table would yield

biased estimation of the model parameter. In general, as the number of latent classes increases, larger

sample sizes will be needed. In addition, it is also important to consider the relative size of the latent

groups. As research in latent class analysis (i.e., Bayesian cluster analysis; McLachlan & Peel, 2000)

has shown, if a hypothesized latent subgroup has a small relative frequency in the population of

interest, the overall sample size must be large enough for the sample to include a sufficient number

of these subgroup members and for the statistical power to detect their presence. At present, given

the recency of the mixture latent Markov modeling technique, there are no established general

guidelines for sample sizes in application of the technique. Clearly, future research on the effect

of sample sizes on the accuracy of parameter estimation in mixture latent Markov modeling is

needed.

Extensions of Mixture Latent Markov Modeling and Future Statistical Advances

The basic technique of mixture latent Markov modeling may be extended to address other important

substantive research questions concerning qualitative changes over time. One extension is to incor-

porate into the model outcome variables that are predicted by the latent class variable representing

the unobserved subpopulations. Given that different latent qualitative change patterns are succinctly

summarized by the latent class variable, the latent class variable may be used to predict the outcomes

of the qualitative change process. The outcomes may be static criterion variables that occur at a time

point that is at the end or after the end of the longitudinal period of status change. Alternatively, the

outcomes may be time-varying criterion variables that are also undergoing changes during the long-

itudinal period of study.

Mixture latent Markov modeling may also be extended to fit data simultaneously to multiple

observed (a priori known) groups. For example, to examine whether the unobserved latent subpopu-

lations are the same across gender groups, a multiple-group analysis can be conducted to estimate

mixture latent Markov models simultaneously for both male and female participants. The logic of

the procedures for this multiple-group mixture latent Markov modeling analysis is similar to the

conventional multiple-group analysis of longitudinal latent variable analysis in which specific

parameters may be fixed or freely estimated across the observed groups to produce different

multiple-group longitudinal latent models for nested model comparisons to determine the ‘‘best’’

model (e.g., see, Chan, 1998).

Finally, we end with several suggestions for future methodological research directions on the

mixture latent Markov modeling technique. First, more research is needed to adapt the technique

to go beyond dichotomous status variables to include polytomous status variables, so that more than

two possible discrete statuses at any single time point may be incorporated in the analysis. In this

respect, it is important to distinguish multiple statuses that are nominal categories versus those that

are ordered categories. When polytomous status variables are modeled, a challenging but interesting

task for researchers concerns how the technique can be adapted to specify and test different models

representing change trajectories or developmental processes that exhibits distinctive patterns of

status changes over time such as an equifinity pattern (i.e., trajectories that started from different

statuses but ended at the same status) and a multifinality pattern (i.e., trajectories that started from

the same status but ended at different statuses). Another methodological research direction concerns

how we can incorporate in the mixture latent Markov model a time-specific intervention during the
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longitudinal period of study so that we can examine the effect of the intervention on longitudinal

qualitative status change and how this intervention effect may differ across the different unobserved

subpopulations. Finally, a future methodological research direction is adapting the technique to

apply to multilevel contexts in which the data sets have nested hierarchical structures where obser-

vations are nested under higher order units of analysis. Multilevel latent variable modeling would

provide the statistical basis necessary for such adaptations.

In summary, mixture latent Markov modeling provides a promising approach for modeling long-

itudinal qualitative status changes across unobserved subpopulations. We end with the same caution-

ary note in Chan (1998) concerning powerful and flexible approaches to model longitudinal

changes—the search for these unobserved subpopulations and the different functional forms of qua-

litative changes in status should be guided by adequate theories and relevant previous empirical

findings.
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Appendix

Table A1. Mplus 5.2 Program Specifications for the Mixture Latent Markov Model With x Variable

Syntax Comments

DATA: FILE IS Sample.DAT; Specify the data file; Sample.dat contains the raw data
VARIABLE: NAMES ARE W1-W4 x; Specify the variable names
CLASSES ¼ C(3) C1(2) C2(2) C3(2)
C4(2);

Specify the number of latent classes to be estimated; C corresponds
to the latent class variable for three unobserved retiree subgroups
(C#1-C#3); C1-C4 correspond to the retiree’s employment status
at four time points, each having two latent classes: not employed
(#1) vs. employed (#2)

MISSING ARE ALL (999); Specify that all ‘‘999’’ values in the data set represent missing values
ANALYSIS: TYPE¼MIXTURE MISSING; Specify the analysis type as mixture modeling with FIML missing

value modeling
MODEL: %OVERALL% Specify the overall model so that three latent longitudinal qualitative

change patterns are modeled and predicted by x
C1#1 on C#1 @20; Specify that in the first latent longitudinal qualitative change pattern

(i.e., C#1), retirees were never employed (i.e., C1#1-C4#1 regress
on C#1 with logistic regression coefficients of 20, representing
100% of nonemployment)

C2#1 on C#1 @20;
C3#1 on C#1 @-20;
C4#1 on C#1 @20;
C1#1 on C#2 @-20; Specify that in the second latent longitudinal qualitative change

pattern (i.e., C#2), retirees were always employed (i.e., C1#1-C4#1
regress on C#2 with logistic regression coefficients of �20, repre-
senting 0% of nonemployment)

C2#1 on C#2 @-20;
C3#1 on C#2 @-20;
C4#1 on C#2 @-20;
C#1 C#2 on x; Regress the membership of the latent retiree subgroups on x
MODEL C: Model for transition coefficients in each latent retiree subgroups
%C#1% Model retirees who were never employed after retirement

(continued)
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Table A1 (continued)

Syntax Comments

C4#1 on C3#1 @20; C3#1 on C2#1
@20; C2#1 on C1#1 @20;

Specify same status across four time points

%C#2% Model retirees who were always employed after retirement
C4#1 on C3#1 @20; C3#1 on C2#1
@20; C2#1 on C1#1 @20;

Specify same status across four time points

%C#3% Model retirees who transition in and out in employment after
retirement)

C4#1 on C3#1; C3#1 on C2#1; C2#1 on
C1#1;

Freely estimate the transition probabilities across time in employ-
ment status

MODEL C.C1: Model for employment status at Time 1 (i.e., C1) by latent retiree
subgroups

%C#1.C1#1% Latent employment status at Time 1 by three latent retiree sub-
groups were estimated freely based on the Time 1 observed
employment status

[W1$1] (1);
%C#1.C1#2%
[W1$1] (2);
%C#2.C1#1% When estimating the latent class ‘‘not employed,’’ the reliability

coefficient for observed employment status, that is, parameter (1), is
set to be the same across all latent retiree subgroups and across all
time points throughout the syntax;
When estimating the latent class ‘‘employed,’’ the reliability coeffi-
cient for observed employment status, that is, parameter (2), is also
set to be the same across all latent retiree subgroups and across all
time points through the syntax

[W1$1] (1);
%C#2.C1#2%
[W1$1] (2);
%C#3.C1#1%
[W1$1] (1);
%C#3.C1#2%
[W1$1] (2);
MODEL C.C2: Model for employment status at Time 2 (i.e., C2) by latent retiree

subgroups
%C#1.C2#1% Latent employment status at Time 2 by three latent retiree sub-

groups were estimated freely based on the Time 2 observed
employment status;

[W2$1] (1);
%C#1.C2#2%
[W2$1] (2);
%C#2.C2#1%
[W2$1] (1);
%C#2.C2#2%
[W2$1] (2);
%C#3.C2#1%
[W2$1] (1);
%C#3.C2#2%
[W2$1] (2);
MODEL C.C3: Model for employment status at Time 3 (i.e., C3) by latent retiree

subgroups
%C#1.C3#1% Latent employment status at Time 3 by three latent retiree sub-

groups were estimated freely based on the Time 3 observed
employment status;

[W3$1] (1);
%C#1.C3#2%
[W3$1] (2);
%C#2.C3#1%
[W3$1] (1);
%C#2.C3#2%
[W3$1] (2);
%C#3.C3#1%
[W3$1] (1);
%C#3.C3#2%
[W3$1] (2);

(continued)
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