689 research outputs found

    End states, ladder compounds, and domain wall fermions

    Get PDF
    A magnetic field applied to a cross linked ladder compound can generate isolated electronic states bound to the ends of the chain. After exploring the interference phenomena responsible, I discuss a connection to the domain wall approach to chiral fermions in lattice gauge theory. The robust nature of the states under small variations of the bond strengths is tied to chiral symmetry and the multiplicative renormalization of fermion masses.Comment: 10 pages, 4 figures; final version for Phys. Rev. Let

    Phase I Cultural Resources Investigations at Justiceburg Resevoir on the Double Mountain Fork of the Brazos River, Garza and Kent Counties, Texas Volume II

    Get PDF
    The prehistoric site descriptions are divided into three sections: Garza County, Kent County, and Isolated Finds. All sites are described fully in a telegraphic format in order to conserve space. The descriptions are organized by county in alphabetical order and in numerical order of site within each county. Information for each site 1s organized into six headings: location, description, features, cultural materials observed/collected, shovel test data, and assessment/recommendations. The determination of the percentage of the site remaining intact is based on in-field observations of the postulated original areal extent of the site versus what is still potentially intact. Assessments are based on each site\u27s individual merits and are stated in terms of eligibility for listing on the National Register of Historic Places. These assessments were made by the Project Archeologist and the Principal Investigator based on a site-by-site review. Two categories of eligibility include: potentially eligible (sites with excellent to unknown research potential) , and not eligible (sites with little or no further research potential). Research potential is derived from each site I s potential to contribute to the resolution of the questions posed in the Research Design (Chapter 5). While most of the research potential categories are reasonably clear, the unknown category should be more fully explained. Sites with unknown potential are those that are buried, lack exposed features, and failed to yield temporally or functionally diagnostic materials. The unknownII designation refers to the inability (based on extant data) to specify which research questions a site may appropriately address rather than a lack of any research potential. Assessments also may refer to exotics. This term is used to identify materials or artifacts that were imported into the local area. Included are such items as obsidian, Alibates agate, Tecovas jasper, and nonlocal ceramics. Recommendations are provided on the basis of each site\u27s assessment. These do not consider the suggested sampling strategy described in Chapter 13, Recommendations/Treatment Plan. Isolated Finds were thoroughly documented in the field and were assigned trinomial site numbers to facilitate record Jceeping; however, they are not felt to be worthy of extended descriptions for reporting purposes. Therefore, this category of sites is treated in highly abbreviated form in a separate section following the site descriptions. Information provided for Isolated Finds includes: site number, location, landform, elevation, area, description, and material type. Isolated finds are defined as any single surface artifact or feature with no associated materials or features, or surface sites with a density of cultural materials less than one item in 20 rna. These finds generally are highly disturbed, redeposited, or lack intact context. No shovel testing was done at Isolated Finds, except at sites 41GR411, 41GR482, 41GRS19, 41GRS32, 41KT46, and 41KT71, where all tests excavated were negative. Only three of these Isolated Finds are dated. These sites are considered to retain little interpretive value beyond the survey level, and none require further work. Because of this, Isolated Finds are not considered eligible for listing on the National Register of Historic Places. Finally, abbreviations are used throughout the site descriptions. Those referring to roads, distances, elevations, and cardinal directions are self-explanatory. However, two others require explanation. GRC refers to Grand River Consultants, Inc., a firm located in Grand River, Colorado, which performed limited archeological survey at Justiceburg in 1982. NRHP refers to the National Register of Historic Places; this phrase is abbreviated to save space since it must be used in the assessments of each individual site

    Application of fluvial scaling relationships to reconstruct drainage-basin evolution and sediment routing for the Cretaceous and Paleocene of the Gulf of Mexico

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.Fluvial systems represent a key component in source-to-sink analysis of ancient sediment-dispersal systems. Modern river channels and channel-related deposits possess a range of scaling relationships that reflect drainage-basin controls on water and sediment flux. For example, channel-belt sand-body thicknesses scale to bankfull discharge, and represent a reliable first-order proxy for contributing drainage-basin area, a proxy that is more robust if climatic regimes can be independently constrained. A database of morphometrics from Quaternary channel belts provides key modern fluvial system scaling relationships, which are applied to Cretaceous- to Paleocene-age fluvial deposits. This study documents the scales of channel-belt sand bodies within fluvial successions from the northern Gulf of Mexico passive-margin basin fill from well logs, and uses scaling relationships developed from modern systems to reconstruct the scale of associated sediment-routing systems and changes in scale through time. We measured thicknesses of 986 channel-belt sand bodies from 248 well logs so as to estimate the scales of the Cretaceous (Cenomanian) Tuscaloosa-Woodbine, Paleocene–early Eocene Wilcox, and Oligocene Vicksburg-Frio fluvial systems. These data indicate that Cenozoic fluvial systems were significantly larger than their Cenomanian counterparts, which is consistent with Cretaceous to Paleocene continental-scale drainage reorganization that routed water discharge and sediment from much of the continental United States to the Gulf of Mexico. At a more detailed level, Paleocene–early Eocene Wilcox fluvial systems were larger than their Oligocene counterparts, which could reflect decreases in drainage-basin size and/or climatic change within the continental interior toward drier climates with less runoff. Additionally, these data suggest that the paleo–Tennessee River, which now joins the Ohio River in the northernmost Mississippi embayment of the central United States, was an independent fluvial system, flowing southwest to the southern Mississippi embayment, or directly to the Gulf of Mexico, through the early Eocene. Changes in scaling relationships through time, and interpreted changes in the scales of contributing drainage basins, are generally consistent with previously published regional paleogeographic maps, as well as with newly published maps of paleodrainage from detrital-zircon provenance and geochronological studies. As part of a suite of metrics derived from modern systems, scaling relationships make it possible to more fully understand and constrain the scale of ancient source-to-sink systems and their changes through time, or cross-check interpretations made by other means

    Fitness of interspecific hybrids in the genus Cyprinella: An evaluation of swimming performance in stream fishes

    Get PDF
    As the result of anthropogenic disturbance, freshwater ecosystems are rapidly being destroyed worldwide. Accordingly, such impacts are also resulting in the loss of aquatic biodiversity. Specifically, the introduction of non-native aquatic species is becoming an increasing concern. Historically, many non-native freshwater fish introductions have been the result of commercial baitfish aquaculture and private aquarium release. Cyprinella lutrensis (the red shiner) is endemic to much of the central U.S., and its natural range does not extent east of the Mississippi River. Since the 1950’s, red shiner have been cultivated and transported across the globe as both bait and aquarium fish. During the early 1990’s, invasive red shiner populations were first observed in the Coosa River Basin, located in northwest Georgia, USA. Originating from bait bucket releases, invasive red shiner have quickly established in this area, and readily compete and hybridize with at least one native species of Cyprinella (Cyprinella venusta), the blacktail shiner. Over the past thirty years, red x blacktail shiner hybrids are becoming more abundant and demonstrate an uncertain level of viability. To date, little is known about the relative fitness of red x blacktail shiner hybrids compared to parental species. If hybrids exhibit a higher level of fitness compared to parental species, then this could result in regional extinctions of native stream fishes. To better understand the relative fitness of native blacktail shiner vs. hybrid shiner, we examined swimming performance as a widely accepted proxy. Blacktail, red, and hybrid shiner were collected in Northwest Georgia during the time frame of August 2020- March 2021. Individual swimming performance trials were then conducted in a recirculating flow chamber. During these trials, a suite of physiological and morphometric measurements were recorded. Here, we present an analysis of our preliminary data, investigating differences in fitness among native and hybrid shiner

    An Overview of the Distributed Space Exploration Simulation (DSES) Project

    Get PDF
    This paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which investigates technologies, and processes related to integrated, distributed simulation of complex space systems in support of NASA's Exploration Initiative. In particular, it describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. With regard to network infrastructure, DSES is developing a Distributed Simulation Network for use by all NASA centers. With regard to software, DSES is developing software models, tools and procedures that streamline distributed simulation development and provide an interoperable infrastructure for agency-wide integrated simulation. Finally, with regard to simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper presents the current status and plans for these three areas, including examples of specific simulations

    Channel-belt scaling relationship and application to early Miocene source-to-sink systems in the Gulf of Mexico basin

    Get PDF
    In past decades, numerous studies have focused on the alluvial sedimentary record of basin fill. Paleo–drainage basin characteristics, such as drainage area or axial river length, have received little attention, mostly because the paleo–drainage system underwent erosion or bypass, and its record is commonly modified and overprinted by subsequent tectonism or erosional processes. In this work, we estimate the drainage areas of early Miocene systems in the Gulf of Mexico basin by using scaling relationships between drainage area and river channel dimensions (e.g., depth) developed in source-to-sink studies. Channel-belt thickness was used to estimate channel depth and was measured from numerous geophysical well logs. Both lower channel-belt thickness and bankfull thickness were measured to estimate the paleo–water depth at low and bankfull stages. Previous paleogeographic reconstruction using detrital zircon and petrographic provenance analysis and continental geomorphic synthesis constrains independent estimates of drainage basin extent. Comparison of results generated by the two independent approaches indicates that drainage basin areas predicted from channel-belt thickness are reasonable and suggests that bankfull thickness correlates best with drainage basin area. The channel bankfull thickness also correlates with reconstructed submarine fan dimension. This work demonstrates application to the deep-time stratigraphic archive, where records of drainage basin characteristics are commonly modified or lost

    Hydrologic indicators of hot spots and hot moments of mercury methylation potential along river corridors

    Get PDF
    The authors acknowledge financial support from the National Science Foundation: EAR-1226741 (to M.B.S.) and EAR-1225630 (to J.D.B.), and from the REG Trust (to M.B.S.).The biogeochemical cycling of metals and other contaminants in river-floodplain corridors is controlled by microbial activity responding to dynamic redox conditions. Riverine flooding thus has the potential to affect speciation of redox-sensitive metals such as mercury (Hg). Therefore, inundation history over a period of decades potentially holds information on past production of bioavailable Hg. We investigate this within a Northern California river system with a legacy of landscape-scale 19th century hydraulic gold mining. We combine hydraulic modeling, Hg measurements in sediment and biota, and first-order calculations of mercury transformation to assess the potential role of river floodplains in producing monomethylmercury (MMHg), a neurotoxin which accumulates in local and migratory food webs. We identify frequently inundated floodplain areas, as well as floodplain areas inundated for long periods. We quantify the probability of MMHg production potential (MPP) associated with hydrology in each sector of the river system as a function of the spatial patterns of overbank inundation and drainage, which affect long-term redox history of contaminated sediments. Our findings identify river floodplains as periodic, temporary, yet potentially important, loci of biogeochemical transformation in which contaminants may undergo change during limited periods of the hydrologic record. We suggest that inundation is an important driver of MPP in river corridors and that the entire flow history must be analyzed retrospectively in terms of inundation magnitude and frequency in order to accurately assess biogeochemical risks, rather than merely highlighting the largest floods or low-flow periods. MMHg bioaccumulation within the aquatic food web in this system may pose a major risk to humans and waterfowl that eat migratory salmonids, which are being encouraged to come up these rivers to spawn. There is a long-term pattern of MPP under the current flow regime that is likely to be accentuated by increasingly common large floods with extended duration.PostprintPeer reviewe

    Mercury abundance and isotopic composition indicate subaerial volcanism prior to the end-Archean “whiff” of oxygen

    Get PDF
    Funding: This study was supported by National Aeronautics and Space Administration Exobiology Grant NNX16AI37G (R.B.) and by the MacArthur Professorship (J.D.B.) at the University of Michigan. M.A.K. acknowledges support from an Agouron Institute postdoctoral fellowship.Earth’s early atmosphere witnessed multiple transient episodes of oxygenation before the Great Oxidation Event 2.4 billion years ago (Ga) [e.g., A. D. Anbar et al., Science 317, 1903–1906 (2007); M. C. Koehler, R. Buick, M. E. Barley, Precambrian Res. 320, 281–290 (2019)], but the triggers for these short-lived events are so far unknown. Here, we use mercury (Hg) abundance and stable isotope composition to investigate atmospheric evolution and its driving mechanisms across the well-studied “whiff” of O2 recorded in the ∌2.5-Ga Mt. McRae Shale from the Pilbara Craton in Western Australia [A. D. Anbar et al., Science 317, 1903–1906 (2007)]. Our data from the oxygenated interval show strong Hg enrichment paired with slightly negative Δ199Hg and near-zero Δ200Hg, suggestive of increased oxidative weathering. In contrast, slightly older beds, which were evidently deposited under an anoxic atmosphere in ferruginous waters [C. T. Reinhard, R. Raiswell, C. Scott, A. D. Anbar, T. W. Lyons, Science 326, 713–716 (2009)], show Hg enrichment coupled with positive Δ199Hg and slightly negative Δ200Hg values. This pattern is consistent with photochemical reactions associated with subaerial volcanism under intense UV radiation. Our results therefore suggest that the whiff of O2 was preceded by subaerial volcanism. The transient interval of O2 accumulation may thus have been triggered by diminished volcanic O2 sinks, followed by enhanced nutrient supply to the ocean from weathering of volcanic rocks causing increased biological productivity.PostprintPeer reviewe

    Validation of empirical source-to-sink scaling relationships in a continental-scale system: The Gulf of Mexico basin Cenozoic record

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.Empirical scaling relationships between known deepwater siliciclastic submarine fan systems and their linked drainage basins have previously been established for modern to submodern depositional systems and in a few ancient, small-scale basins. Comprehensive mapping in the subsurface Gulf of Mexico basin and geological mapping of the North American drainage network facilitates a more rigorous test of scaling relationships in a continental-size system with multiple mountain source terranes, rivers, deltas, slopes, and abyssal plain fan systems formed over 65 m.y. of geologic time. An immense database of drilled wells and high-quality industry seismic data in this prolific hydrocarbon basin provide the independent measure of deepwater fan distribution and dimensions necessary to test source-to-sink system scaling relationships. Analysis of over 40 documented deepwater fan and apron systems in the Gulf of Mexico, ranging in age from Paleocene to Pleistocene, reveals that submarine-fan system scales vary predictably with catchment length and area. All fan system run-out lengths, as measured from shelf margin to mapped fan termination, fall in a range of 10%–50% of the drainage basin length, and most are comparable in scale to large (Mississippi River–scale) systems although some smaller fans are present (e.g., Oligocene Rio Bravo system). For larger systems such as those of the Paleocene Wilcox depositional episodes, fan run-out lengths generally fall in the range of 10%–25% of the longest river length. Submarine fan widths, mapped from both seismic reflection data and well control, appear to scale with fan run-out lengths, though with a lower correlation (R2 = 0.40) probably due to uncertainty in mapping fan width in some subsalt settings. Catchment area has a high correlation (R2 = 0.85) with river length, suggesting that fluvial discharge and sediment flux may be primary drivers of ancient fan size. Validation of these first-order source-to-sink scaling relationships provides a predictive tool in frontier basins with less data. Application to less-constrained early Eocene fan systems of the southern Gulf of Mexico demonstrates the utility for exploration as well as paleogeographic reconstructions of ancient drainage systems. This approach has considerable utility in estimating dimensions of known but poorly constrained submarine fans in the subsurface or exposed in outcrop

    A century-long record of plant evolution reconstructed from a coastal marsh seed bank

    Get PDF
    Evidence is mounting that climate-driven shifts in environmental conditions can elicit organismal evolution, yet there are sparingly few long-term records that document the tempo and progression of responses, particularly for plants capable of transforming ecosystems. In this study, we “resurrected” cohorts of a foundational coastal marsh sedge (Schoenoplectus americanus) from a time-stratified seed bank to reconstruct a century-long record of heritable variation in response to salinity exposure. Common-garden experiments revealed that S. americanus exhibits heritable variation in phenotypic traits and biomass-based measures of salinity tolerance. We found that responses to salinity exposure differed among the revived cohorts, with plants from the early 20th century exhibiting greater salinity tolerance than those from the mid to late 20th century. Fluctuations in salinity tolerance could reflect stochastic variation but a congruent record of genotypic variation points to the alternative possibility that the loss and gain in functionality are driven by selection, with comparisons to historical rainfall and paleosalinity records suggesting that selective pressures vary according to shifting estuarine conditions. Because salinity tolerance in S. americanus is tightly coupled to primary productivity and other vital ecosystem attributes, these findings indicate that organismal evolution merits further consideration as a factor shaping coastal marsh responses to climate change
    • 

    corecore