1,343 research outputs found

    Quasi-particle model of strongly interacting matter

    Full text link
    The successful quasi-particle model is compared with recent lattice data of the coefficients in the Taylor series expansion of the excess pressure at finite temperature and baryon density. A chain of approximations, starting from QCD to arrive at the model expressions for the entropy density, is presented.Comment: Nov 2004. 4pp. Invited talk given at 8th International Conference on Strangeness in Quark Matter (SQM2004), Cape Town, South Africa, 15-20 Sep 200

    Keplerian Squeezed States and Rydberg Wave Packets

    Get PDF
    We construct minimum-uncertainty solutions of the three-dimensional Schr\"odinger equation with a Coulomb potential. These wave packets are localized in radial and angular coordinates and are squeezed states in three dimensions. They move on elliptical keplerian trajectories and are appropriate for the description of the corresponding Rydberg wave packets, the production of which is the focus of current experimental effort. We extend our analysis to incorporate the effects of quantum defects in alkali-metal atoms, which are used in experiments.Comment: accepted for publication in Physical Review

    Edge-Magnetoplasmon Wave-Packet Revivals in the Quantum Hall Effect

    Get PDF
    The quantum Hall effect is necessarily accompanied by low-energy excitations localized at the edge of a two-dimensional electron system. For the case of electrons interacting via the long-range Coulomb interaction, these excitations are edge magnetoplasmons. We address the time evolution of localized edge-magnetoplasmon wave packets. On short times the wave packets move along the edge with classical E cross B drift. We show that on longer times the wave packets can have properties similar to those of the Rydberg wave packets that are produced in atoms using short-pulsed lasers. In particular, we show that edge-magnetoplasmon wave packets can exhibit periodic revivals in which a dispersed wave packet reassembles into a localized one. We propose the study of edge-magnetoplasmon wave packets as a tool to investigate dynamical properties of integer and fractional quantum-Hall edges. Various scenarios are discussed for preparing the initial wave packet and for detecting it at a later time. We comment on the importance of magnetoplasmon-phonon coupling and on quantum and thermal fluctuations.Comment: 18 pages, RevTex, 7 figures and 2 tables included, Fig. 5 was originally 3Mbyte and had to be bitmapped for submission to archive; in the process it acquired distracting artifacts, to upload the better version, see http://physics.indiana.edu/~uli/publ/projects.htm

    Elliptical Squeezed States and Rydberg Wave Packets

    Get PDF
    We present a theoretical construction for closest-to-classical wave packets localized in both angular and radial coordinates and moving on a keplerian orbit. The method produces a family of elliptical squeezed states for the planar Coulomb problem that minimize appropriate uncertainty relations in radial and angular coordinates. The time evolution of these states is studied for orbits with different semimajor axes and eccentricities. The elliptical squeezed states may be useful for a description of the motion of Rydberg wave packets excited by short-pulsed lasers in the presence of external fields, which experiments are attempting to produce. We outline an extension of the method to include certain effects of quantum defects appearing in the alkali-metal atoms used in experiments.Comment: published in Phys. Rev. A, vol. 52, p. 2234, Sept. 199

    Long-Term Evolution and Revival Structure of Rydberg Wave Packets for Hydrogen and Alkali-Metal Atoms

    Full text link
    This paper begins with an examination of the revival structure and long-term evolution of Rydberg wave packets for hydrogen. We show that after the initial cycle of collapse and fractional/full revivals, which occurs on the time scale trevt_{\rm rev}, a new sequence of revivals begins. We find that the structure of the new revivals is different from that of the fractional revivals. The new revivals are characterized by periodicities in the motion of the wave packet with periods that are fractions of the revival time scale trevt_{\rm rev}. These long-term periodicities result in the autocorrelation function at times greater than trevt_{\rm rev} having a self-similar resemblance to its structure for times less than trevt_{\rm rev}. The new sequence of revivals culminates with the formation of a single wave packet that more closely resembles the initial wave packet than does the full revival at time trevt_{\rm rev}, i.e., a superrevival forms. Explicit examples of the superrevival structure for both circular and radial wave packets are given. We then study wave packets in alkali-metal atoms, which are typically used in experiments. The behavior of these packets is affected by the presence of quantum defects that modify the hydrogenic revival time scales and periodicities. Their behavior can be treated analytically using supersymmetry-based quantum-defect theory. We illustrate our results for alkali-metal atoms with explicit examples of the revival structure for radial wave packets in rubidium.Comment: To appear in Physical Review A, vol. 51, June 199

    Exploratory Modelling of Financial Reporting and Analysis Practices in Small Growth Enterprises

    Get PDF
    This paper reports an exploratory study of statistical modelling of historical financial reporting and analysis in a sample of small growth enterprises. The study sought to identify those factors that determine whether particular financial reporting and analysis practices are undertaken, and to represent these explanatory factors in expressions that reflect their relative and combined influence. Dichotomous logistic regression is employed to model financial analysis and polytomous logistic regression is used to model financial reporting. The models developed seem moderately encouraging in terms of the statistical significance and predictive ability. The overall classification success for financial analysis is a modest 65 percent; but identifying users of financial ratio analysis is achieved with just below 90 percent accuracy. The overall classification success for a trichotomous financial reporting scale exceeds 70 percent; with anticipation of financial reporting at the highest level being as accurate as 90 percent. External validation of the models remains an important priority

    Minimum-Uncertainty Angular Wave Packets and Quantized Mean Values

    Get PDF
    Uncertainty relations between a bounded coordinate operator and a conjugate momentum operator frequently appear in quantum mechanics. We prove that physically reasonable minimum-uncertainty solutions to such relations have quantized expectation values of the conjugate momentum. This implies, for example, that the mean angular momentum is quantized for any minimum-uncertainty state obtained from any uncertainty relation involving the angular-momentum operator and a conjugate coordinate. Experiments specifically seeking to create minimum-uncertainty states localized in angular coordinates therefore must produce packets with integer angular momentum.Comment: accepted for publication in Physical Review

    Gravitational physics with antimatter

    Full text link
    The production of low-energy antimatter provides unique opportunities to search for new physics in an unexplored regime. Testing gravitational interactions with antimatter is one such opportunity. Here a scenario based on Lorentz and CPT violation in the Standard- Model Extension is considered in which anomalous gravitational effects in antimatter could arise.Comment: 5 pages, presented at the International Conference on Exotic Atoms (EXA 2008) and the 9th International Conference on Low Energy Antiproton Physics (LEAP 2008), Vienna, Austria, September 200
    corecore