2,016 research outputs found

    Industrial application experiment series

    Get PDF
    Two procurements within the Industrial Application Experiment Series of the Thermal Power Systems Project are discussed. The first procurement, initiated in April 1980, resulted in an award to the Applied Concepts Corporation for the Capital Concrete Experiment: two Fresnel concentrating collectors will be evaluated in single-unit installations at the Jet Propulsion Laboratory Parabolic Dish Test Site and at Capitol Concrete Products, Topeka, Kansas. The second procurement, initiated in March 1981, is titled, "Thermal System Engineering Experiment B." The objective of the procurement is the rapid deployment of developed parabolic dish collectors

    Keplerian Squeezed States and Rydberg Wave Packets

    Get PDF
    We construct minimum-uncertainty solutions of the three-dimensional Schr\"odinger equation with a Coulomb potential. These wave packets are localized in radial and angular coordinates and are squeezed states in three dimensions. They move on elliptical keplerian trajectories and are appropriate for the description of the corresponding Rydberg wave packets, the production of which is the focus of current experimental effort. We extend our analysis to incorporate the effects of quantum defects in alkali-metal atoms, which are used in experiments.Comment: accepted for publication in Physical Review

    Edge-Magnetoplasmon Wave-Packet Revivals in the Quantum Hall Effect

    Get PDF
    The quantum Hall effect is necessarily accompanied by low-energy excitations localized at the edge of a two-dimensional electron system. For the case of electrons interacting via the long-range Coulomb interaction, these excitations are edge magnetoplasmons. We address the time evolution of localized edge-magnetoplasmon wave packets. On short times the wave packets move along the edge with classical E cross B drift. We show that on longer times the wave packets can have properties similar to those of the Rydberg wave packets that are produced in atoms using short-pulsed lasers. In particular, we show that edge-magnetoplasmon wave packets can exhibit periodic revivals in which a dispersed wave packet reassembles into a localized one. We propose the study of edge-magnetoplasmon wave packets as a tool to investigate dynamical properties of integer and fractional quantum-Hall edges. Various scenarios are discussed for preparing the initial wave packet and for detecting it at a later time. We comment on the importance of magnetoplasmon-phonon coupling and on quantum and thermal fluctuations.Comment: 18 pages, RevTex, 7 figures and 2 tables included, Fig. 5 was originally 3Mbyte and had to be bitmapped for submission to archive; in the process it acquired distracting artifacts, to upload the better version, see http://physics.indiana.edu/~uli/publ/projects.htm

    Lattice QCD-based equations of state at vanishing net-baryon density

    Get PDF
    We present realistic equations of state for QCD matter at vanishing net-baryon density which embed recent lattice QCD results at high temperatures combined with a hadron resonance gas model in the low-temperature, confined phase. In the latter, we allow an implementation of partial chemical equilibrium, in which particle ratios are fixed at the chemical freeze-out, so that a description closer to the experimental situation is possible. Given the present uncertainty in the determination of the chemical freeze-out temperature from first-principle lattice QCD calculations, we consider different values within the expected range. The corresponding equations of state can be applied in the hydrodynamic modeling of relativistic heavy-ion collisions at the LHC and at the highest RHIC beam energies. Suitable parametrizations of our results as functions of the energy density are also provided.Comment: Updated journal version with refined EoS-parametrization. July 2014. 8 pp. 4 figs. 3 parametrization-tables and weblink Ref. [45

    Elliptical Squeezed States and Rydberg Wave Packets

    Get PDF
    We present a theoretical construction for closest-to-classical wave packets localized in both angular and radial coordinates and moving on a keplerian orbit. The method produces a family of elliptical squeezed states for the planar Coulomb problem that minimize appropriate uncertainty relations in radial and angular coordinates. The time evolution of these states is studied for orbits with different semimajor axes and eccentricities. The elliptical squeezed states may be useful for a description of the motion of Rydberg wave packets excited by short-pulsed lasers in the presence of external fields, which experiments are attempting to produce. We outline an extension of the method to include certain effects of quantum defects appearing in the alkali-metal atoms used in experiments.Comment: published in Phys. Rev. A, vol. 52, p. 2234, Sept. 199

    Fluxoid fluctuations in mesoscopic superconducting rings

    Full text link
    Rings are a model system for studying phase coherence in one dimension. Superconducting rings have states with uniform phase windings that are integer multiples of 2π\pi called fluxoid states. When the energy difference between these fluxoid states is of order the temperature so that phase slips are energetically accessible, several states contribute to the ring's magnetic response to a flux threading the ring in thermal equilibrium and cause a suppression or downturn in the ring's magnetic susceptibility as a function of temperature. We review the theoretical framework for superconducting fluctuations in rings including a model developed by Koshnick1^1 which includes only fluctuations in the ring's phase winding number called fluxoid fluctuations and a complete model by von Oppen and Riedel2^2 that includes all thermal fluctuations in the Ginzburg-Landau framework. We show that for sufficiently narrow and dirty rings the two models predict a similar susceptibility response with a slightly shifted Tc indicating that fluxoid fluctuations are dominant. Finally we present magnetic susceptibility data for rings with different physical parameters which demonstrate the applicability of our models. The susceptibility data spans a region in temperature where the ring transitions from a hysteretic to a non hysteretic response to a periodic applied magnetic field. The magnetic susceptibility data, taken where transitions between fluxoid states are slow compared to the measurement time scale and the ring response was hysteretic, decreases linearly with increasing temperature resembling a mean field response with no fluctuations. At higher temperatures where fluctuations begin to play a larger role a crossover occurs and the non-hysteretic data shows a fluxoid fluctuation induced suppression of diamagnetism below the mean field response that agrees well with the models

    Advanced cogeneration research study: Executive summary

    Get PDF
    This study provides a broad based overview of selected areas relevant to the development of a comprehensive Southern California Edison (SCE) advanced cogeneration project. The areas studied are: (1) Cogeneration potential in the SCE service territory; (2) Advanced cogeneration technologies; and (3) Existing cogeneration computer models. An estimated 3700 MW sub E could potentially be generated from existing industries in the Southern California Edison service territory using cogeneration technology. Of this total, current technology could provide 2600 MW sub E and advanced technology could provide 1100 MW sub E. The manufacturing sector (SIC Codes 20-39) was found to have the highest average potential for current cogeneration technology. The mining sector (SIC Codes 10-14) was found to have the highest potential for advanced technology

    Persistent currents in normal metal rings

    Full text link
    The authors have measured the magnetic response of 33 individual cold mesoscopic gold rings, one ring at a time. The response of some sufficiently small rings has a component that is periodic in the flux through the ring and is attributed to a persistent current. Its period is close to h/e, and its sign and amplitude vary between rings. The amplitude distribution agrees well with predictions for the typical h/e current in diffusive rings. The temperature dependence of the amplitude, measured for four rings, is also consistent with theory. These results disagree with previous measurements of three individual metal rings that showed a much larger periodic response than expected. The use of a scanning SQUID microscope enabled in situ measurements of the sensor background. A paramagnetic linear susceptibility and a poorly understood anomaly around zero field are attributed to defect spins.Comment: Journal version. 4+ pages, 3 figures. See http://stanford.edu/group/moler/publications.html for the auxiliary document containing additional data and discussion (Ref. 29). Changes w.r.t. v1: Clarified some details in introduction and regarding experimental procedures, shortened abstract, added references and fixed some typo
    corecore