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Abstract

We present realistic equations of state for QCD matter at vanishing net-baryon density which embed 
recent lattice QCD results at high temperatures combined with a hadron resonance gas model in the low-
temperature, confined phase. In the latter, we allow an implementation of partial chemical equilibrium, in 
which particle ratios are fixed at the chemical freeze-out, so that a description closer to the experimental 
situation is possible. Given the present uncertainty in the determination of the chemical freeze-out temper-
ature from first-principle lattice QCD calculations, we consider different values within the expected range. 
The corresponding equations of state can be applied in the hydrodynamic modeling of relativistic heavy-ion 
collisions at the LHC and at the highest RHIC beam energies. Suitable parametrizations of our results as 
functions of the energy density are also provided.
© 2015 CERN for the benefit of the Authors. Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In the relativistic heavy-ion collisions at RHIC (Relativistic Heavy-Ion Collider) and LHC 
(Large Hadron Collider), a hot deconfined state of strongly interacting matter is transiently cre-
ated, the Quark–Gluon Plasma (QGP). This form of QCD matter is believed to have existed 
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in the very first moments of our universe. As the produced hot and dense system cools down 
during its expansion, matter undergoes a transition from the QGP phase into a state dominated 
by color-confined, massive hadronic degrees of freedom. The nature of this phase transforma-
tion has been determined at vanishing baryon-chemical potential by first-principle lattice QCD 
simulations: it is an analytic crossover, taking place over a broad region of temperatures T [1]. 
The value of the (pseudo-)critical temperature Tc associated with this confinement transition de-
pends to some extent on the considered order-parameter. For example, the Wuppertal–Budapest
(WB) and hotQCD Collaborations found comparable values for chiral symmetry restoration: 
Tc = (155 ± 6) MeV in [2] and Tc = (154 ± 9) MeV in [3], respectively.

The collective flow dynamics of the bulk of matter created in heavy ion collisions can be suc-
cessfully modeled by means of relativistic hydrodynamics (cf. e.g. the reviews in [4,5]), starting 
from a stage immediately after thermalization until the kinetic freeze-out of final state hadrons. 
Assuming local thermal equilibrium, the conservation equations for energy, momentum and for 
the additionally conserved charges (net-baryon number NB , net-electric charge NQ and net-
strangeness NS ) drive the evolution of the system. An essential ingredient for this modeling is 
the equation of state (EoS), which provides locally a relation between energy density ε, pres-
sure p and the densities nB , nQ and nS of the conserved charges. The parameter controlling 
the acceleration of the fluid collective flow due to pressure gradients is the speed of sound, 
cs = √

∂p/∂ε.
A quantitative comparison of hydrodynamic simulations with the observed collective flow be-

havior revealed that the evolution of the system can be described by nearly ideal hydrodynamics, 
cf. e.g. [6–12]. In these studies, a uniquely small ratio of shear viscosity η to entropy density s of 
the hot matter was determined, cf. also the reviews in [13,14]. This led to our current understand-
ing of the QGP as a strongly coupled, nearly perfect fluid [15–17]. Assuming the conservation of 
entropy, i.e. neglecting the viscous entropy production associated with such a small η/s [18], one 
needs to know the EoS only along adiabatic paths. In this work, we concentrate on the situation 
of a vanishing nB , i.e. we consider the path nB/s = 0. We note that in the thermal system created 
in a heavy-ion collision one always has nS = 0, while nQ (in the case of a partial stopping at the 
lowest center-of-mass energies) is related to nB .

A rigorous determination of the equation of state in thermal and chemical equilibrium for 
nB = 0 in the non-perturbative regime of QCD can be achieved with lattice gauge theory simu-
lations. These reach nowadays unprecedented levels of accuracy. A basic quantity for the EoS is 
the interaction measure I = ε − 3p, which has been calculated in [19,20] and in [21–23]. The 
numerical results for I (T )/T 4 in [19,20] show significant differences from those in [22,23] in 
the transition region. In this work, we opt for utilizing the recent, continuum-extrapolated lattice 
QCD data from the WB-Collaboration presented in [23], corresponding to a system of 2 + 1
quark flavors with physical quark masses. By combining a suitable parametrization of these lat-
tice QCD results with a hadron resonance gas (HRG) model in thermal and chemical equilibrium, 
we construct a baseline QCD equation of state for nB = 0.

The focus of our work lies, however, on the implementation of partial chemical equilibrium, 
i.e. a non-equilibrium situation, in the hadronic phase. In this way, one can properly account for 
the actual chemical composition in the confined phase, an issue which is not addressed within 
equilibrium lattice QCD thermodynamics. This is known to be of importance in order to re-
produce not only the experimentally observed flow and pT -spectra, but also the correct particle 
ratios [24].

Because of the present uncertainty in the exact value of the chemical freeze-out tempera-
ture Tch, cf. [25], we consider various values for Tch within the expected range, below which 
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Fig. 1. (Color online.) Scaled interaction measure I (T )/T 4 (panel (a)) and pressure p(T )/T 4 (panel (b)) as functions 
of the temperature T . The symbols depict the lattice QCD results from [23], while the dashed curves show the results of 
the employed HRG model in thermal and chemical equilibrium.

the HRG is assumed to be in partial chemical equilibrium. In this way, different realistic QCD 
equations of state are obtained, which can be used in the hydrodynamic simulations of relativis-
tic heavy-ion collisions for LHC and RHIC top beam energies at mid-rapidity when net-baryon 
density effects can be neglected. Having such QCD equations of state at hand will allow to study 
the possible impact of a variation of 15 MeV in Tch on particle spectra as well as a more con-
trolled determination of the QGP transport properties, as for example the shear and bulk viscosity 
coefficients. At smaller beam energies, effects of a non-vanishing net-baryon density become im-
portant. Corresponding QCD equations of state will be presented in a forthcoming publication.

The equation of state of QCD matter has been the subject of numerous studies in the literature. 
Among different other approaches, we mention combinations of the HRG model with an effective 
theory of QCD [26], with a phenomenological model for QCD thermodynamics [27] and with 
various parametrizations [28–31] of lattice QCD results. Developments in using a parametriza-
tion of lattice QCD results for finite nB were recently reported in [32,33]. Moreover, in [34] an 
EoS, describing both the QGP and the hadronic phase based on one effective model approach, 
was constructed and applied in finite-nB hydrodynamics studies (see also further developments 
in [35]).

The paper is organized as follows: in Section 2, we discuss briefly the employed lattice 
QCD results [23] and their combination with an HRG model in thermal and chemical equi-
librium. Section 3 deals with the inclusion of partial chemical equilibrium in the description of 
the hadronic phase. In Section 4, we discuss the obtained QCD equations of state and provide 
practical parametrizations of our results.

2. Construction of a lattice QCD-based EoS

In [23], continuum-extrapolated lattice gauge theory results of QCD thermodynamics for 
2 + 1 quark flavors with physical mass parameters were presented. The corresponding results 
for the scaled interaction measure I (T )/T 4 and for the scaled pressure p(T )/T 4 are depicted in 
Fig. 1 panels (a) and (b), respectively. A suitable parametrization of the results for I (T )/T 4 as 
a function of T , which provides an accurate description within the given error-band, can be found 
by employing a similar fit function as the one used in [22]. From this, the other thermodynamic 
quantities follow via thermodynamic identities: the scaled pressure is determined by a definite 
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T -integral of I (T )/T 5, while ε(T ) = 3p(T ) + I (T ) and s(T ) = (ε(T ) + p(T ))/T . This yields 
for s(T ) extrapolated to T = 800 MeV a value of about 82.5% of the Stefan–Boltzmann limit for 
a non-interacting gas of 3 massless quark flavors.

The thermodynamics of QCD matter in the hadronic phase can be well accounted for by the 
HRG model describing hadronic matter in thermal and chemical equilibrium, cf. e.g. [36,37]. 
The pressure of the model in the thermodynamic limit is given by

p
(
T , {μk}

) =
∑

k

(−1)Bk+1 dkT

(2π)3

∫
d3 �p ln

[
1 + (−1)Bk+1e

−(

√
�p2+m2

k−μk)/T ]
, (1)

where the sum is taken over all hadronic (including resonances) states k (baryons and anti-
baryons being summed independently) included in the model. In Eq. (1), dk and mk denote 
the degeneracy factor and the mass, and μk is the chemical potential of the hadron-species k. In 
chemical equilibrium, the latter reads μk = BkμB + QkμQ + SkμS , where Bk , Qk and Sk are 
the respective quantum numbers of baryon charge, electric charge and strangeness, while μB , 
μQ and μS denote the chemical potentials associated with nB , nQ and nS .

Other thermodynamic quantities follow from standard relations, e.g. s = (∂p/∂T )μk
. The 

particle number density of species k, nk = (∂p/∂μk)T , is given by the momentum-integral

nk(T ,μk) = dk

(2π)3

∫
d3 �p 1

(−1)Bk+1 + e
(

√
�p2+m2

k−μk)/T

(2)

and the net-baryon density follows from nB = ∑
k Bknk . Since we consider nB = 0, all μk are 

set to zero in the chemical equilibrium case.
In this work, we employ an HRG model containing states up to a mass of 2 GeV as, for 

example, listed in the edition [38] of the Particle Data Book. Such a list is also included in 
the EoS-package provided along with the work in [31]. As evident from Fig. 1, this choice is 
sufficient to describe the available lattice QCD data fairly well for temperatures below 175 MeV, 
where HRG and lattice QCD results mostly overlap. In fact, the relative deviation of the HRG 
model from the lattice QCD data [23] in this overlap region, taking the error-bars in the data into 
account, is at most 9% in I (T )/T 4 and 5% in p(T )/T 4.

Given the reasonable agreement between lattice QCD data and the HRG model, we construct 
an equation of state, which serves as a baseline EoS for the chemical equilibrium case: we uti-
lize our suitable parametrization of the lattice QCD results from [23] at high T and change the 
prescription to the above discussed HRG model at low T around a switching temperature of 
172 MeV. Generically, such an approach can introduce discontinuities in the thermodynamic 
quantities. We improve this situation by employing a straightforward interpolation procedure be-
tween the two parts in the interval 165 MeV ≤ T ≤ 180 MeV, which ensures that the pressure 
and its first and second derivatives with respect to T are continuous. In this way, the speed of 
sound remains a smooth function for all temperatures. A similar strategy was applied for the 
construction of the QCD equation of state in [31].

3. Hadron resonance gas in partial chemical equilibrium

In heavy-ion collisions, the time scales for inelastic particle number changing processes, 
which are responsible for the chemical equilibration of the hadronic matter, are typically much 
larger than the lifetime of the hadronic stage [39]. Thus, it is more realistic to assume that the 
hadronic phase is not in complete chemical equilibrium. This was first discussed in [40] and then 
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considered in numerous works, cf. e.g. [24,41–44]: according to this idea, hadronic matter is 
formed at the hadronization temperature Tc in chemical equilibrium. However, for temperatures 
below the chemical freeze-out temperature Tch, where Tch ≤ Tc, the inelastic processes become 
suppressed, while the elastic interactions mediated by frequent strong resonance formations and 
decays (e.g. ππ → ρ → ππ , Kπ → K∗ → Kπ , pπ → � → pπ etc.) continue to occur. Con-
sequently, the experimentally observed ratios of particle multiplicities of those species i, which 
are stable against strong decays within the lifetime of the system, are fixed at Tch. This is to say 
that for T < Tch the corresponding effective particle numbers N̄i = Ni + ∑

r dr→iNr are frozen. 
Here, Ni denotes the actual particle number of the stable hadron i, Nr the actual particle number 
of resonance r and dr→i gives the average number of hadrons i produced in the decay of reso-
nance r . For example, the conserved quantity in the process ππ → ρ → ππ is the effective pion 
number N̄π = Nπ + 2Nρ . The above sum has to be taken over all the states (resonances) that 
decay into hadron i within the lifetime of the hadronic stage. As their effective number is fixed 
at Tch, but T decreases during the expansion of matter, each stable particle species i acquires 
an effective, T -dependent chemical potential μi(T ). The chemical potentials of the resonances, 
instead, can be written as a combination μr = ∑

i dr→iμi of the effective chemical potentials 
of the stable hadrons. The hadronic phase is, thus, in a state of partial chemical equilibrium 
below Tch.

The freeze-out of the chemical composition of the system at Tch implies, in addition to the 
conservation of energy, momentum and of the charges NB , NQ and NS , also the conservation 
of the effective number N̄i of each stable particle species i below Tch. This makes the EoS 
a highly-involved relation between p, ε and all charge densities. For conserved entropy, the ratio 
between the effective particle number density and the entropy density n̄i/s is fixed at Tch. This 
provides a practical tool to conserve all the N̄i and to determine all the μi(T ) for T < Tch from 
the conditions

n̄i (T , {μi′(T )})
s(T , {μi′(T )}) = n̄i (Tch, {0})

s(Tch, {0}) , (3)

which imply that each n̄i depends, in general, on all the effective chemical potentials μi′(T )

(including μi(T )). The knowledge of all the μi(T ) is, apart from knowing the EoS, neces-
sary for determining the final state hadron abundances. We note that the above conditions en-
tail also that the particle ratios of stable hadrons are fixed at Tch: n̄i1(T , {μi})/n̄i2(T , {μi}) =
n̄i1(Tch, {0})/n̄i2(Tch, {0}).

In this work, we consider as stable particle species the mesons π0, π+, π−, K+, K−, K0, 
K0 and η and the baryons p, n, Λ0, Σ+, Σ0, Σ−, Ξ0, Ξ− and Ω− as well as their respec-
tive anti-baryons, i.e. in total 26 different states. Correspondingly, we consider different isospin 
states individually. In general, this becomes important only when considering non-vanishing net-
densities nB , nQ and/or nS . In the nB = 0 case studied in this work, however, particles and their 
corresponding anti-particles develop the same effective chemical potentials. For the chemical 
freeze-out temperature, we consider different values, namely Tch/MeV = 145, 150, 155 and 160. 
These are within the range of the Tc-values determined in lattice QCD [2,3].

In Fig. 2, we exhibit the temperature-dependence of the effective chemical potentials μi(T )

of some representative particle species as determined from Eq. (3) for Tch = 150 MeV. As can 
be seen from Fig. 2, the μi(T ) increase with decreasing T . The T -dependence of μi(T ) for 
species i can be parametrized conveniently by the quadratic fit function

μi(T ) = ai(Tch − T ) + bi(Tch − T )2. (4)
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Fig. 2. Temperature-dependence of the effective chemical potentials for selected hadronic states, considering a chemical 
freeze-out temperature of Tch = 150 MeV. The solid curves depict μi(T ) for the baryons Ω− , Ξ−, Σ− , Λ0 and p from 
top to bottom, while the dashed curves show μi(T ) for the mesons η, K− and π+ from top to bottom.

Table 1
Parameter-values entering Eq. (4). With these, the effective chemical potentials μi(T ) of the stable particle species i can 
be described for temperatures T < Tch . For T ≥ Tch , all μi(T ) = 0. Note that anti-baryons obey the same parametrization 
as their respective baryons.

Species Tch = 0.145 GeV Tch = 0.150 GeV Tch = 0.155 GeV Tch = 0.160 GeV

ai bi/GeV−1 ai bi/GeV−1 ai bi/GeV−1 ai bi/GeV−1

π0 1.745 −8.607 1.785 −8.438 1.816 −8.220 1.839 −7.960
π+, π− 1.766 −8.520 1.803 −8.334 1.835 −8.140 1.853 −7.836
K+, K− 3.156 −0.992 3.080 −1.125 3.008 −1.233 2.938 −1.307
K0, K0 3.191 −1.131 3.114 −1.246 3.044 −1.393 2.973 −1.440
η 3.545 −2.127 3.467 −2.296 3.396 −2.465 3.324 −2.538

p 6.104 1.504 5.893 1.489 5.694 1.446 5.507 1.396
n 6.113 1.530 5.899 1.525 5.701 1.465 5.513 1.420
Λ0 6.914 4.951 6.642 4.730 6.389 4.466 6.153 4.202
Σ+ 7.393 2.185 7.145 1.827 6.915 1.466 6.700 1.149
Σ0 7.420 2.160 7.170 1.806 6.940 1.453 6.723 1.145
Σ− 7.460 2.161 7.211 1.770 6.977 1.444 6.760 1.135
Ξ0 7.939 5.461 7.634 5.055 7.349 4.670 7.084 4.302
Ξ− 7.981 5.551 7.673 5.149 7.387 4.748 7.121 4.373
Ω− 10.409 3.193 10.052 2.719 9.722 2.249 9.411 1.878

Here, the parameters ai and bi depend on the value of Tch. Since for a complete EoS the knowl-
edge of all μi(T ) is required, we summarize the corresponding parameter-values in Table 1. With 
these, μi(T ) is obtained in units of GeV for Tch and T given in units of GeV.

These parametrizations provide excellent fits for all μi(T ) in the temperature range 70 MeV ≤
T ≤ Tch with a maximal χ2 = 9 · 10−6. We note that overall, for the large T -range explored in 
a hydrodynamic simulation, cubic fit functions for the μi(T ) yield more accurate descriptions 
of the full numerical results obtained from Eq. (3) than the quadratic functions, in particular for 
small T . In the interesting interval 70 MeV ≤ T ≤ Tch, however, the quadratic ansatz Eq. (4) pro-
vides fits, which are comparable in accuracy with the cubic-fits for the baryons and anti-baryons, 
while they are even slightly better for the mesons.
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Fig. 3. (Color online.) (a) Visualization of the different equations of state p(ε) for nB = 0 zoomed into the regions 
in ε, in which the confinement transition and the chemical freeze-out occur. The solid curve depicts the EoS with an
HRG in chemical equilibrium in the hadronic phase. The dashed curves show the equations of state including partial 
chemical equilibrium below εch . The value of εch depends on the value of the freeze-out temperature Tch . We consider 
Tch/MeV = 145, 150, 155 and 160 (from top to bottom in the figure, respectively). (b) Connection between temperature 
and energy density T (ε) for the equations of state with chemical equilibrium (solid curve) and with partial chemical 
equilibrium (dashed curves) in the hadronic phase (labeling as in panel (a)). Suitable parametrizations of these results as 
functions of ε are provided in Eqs. (5)–(7) together with Table 2 and in Eqs. (9) and (11) together with Table 3.

4. Discussion and conclusions

We obtain various equations of state by combining our parametrization of the lattice QCD 
data [23] as a function of T with the HRG model either in chemical equilibrium or in partial 
chemical equilibrium in the hadronic phase with various Tch-values in the latter case. For the use 
in a hydrodynamic simulation, however, the EoS is usually given in the form p(ε, nB), i.e. as 
a function of ε and nB , together with the results for the effective chemical potentials μi required 
for determining the particle abundances. In Fig. 3, we show our results for the different equations 
of state p(ε) supplemented by the corresponding T (ε) for nB = 0. We concentrate in Fig. 3
on a visualization of the energy density regions, in which the confinement transition and the 
chemical freeze-out take place.

As it is evident from Fig. 3 panel (a), differences in p(ε) between chemical equilibrium (solid 
curve) and partial chemical equilibrium (dashed curves) in the hadronic phase are small. The 
ε-dependence of T , instead, is visibly influenced for ε < εch by the chemical freeze-out (cf. 
panel (b) in Fig. 3), where the value of εch depends on Tch.

Our results are collected in tabulated form and made available along with this publication [45]. 
Moreover, for practical convenience we also provide parametrizations as a function of ε of these 
numerical results, similar to Ref. [18]. In the chemical equilibrium case, the relevant thermody-
namic quantities can be parametrized in the following way:

p(ε) = a0ε + a1

(a2 + 1)
εa2+1 + a3

a4
exp[a4ε] − a5

(−a7)a6+1
Γ (a6 + 1,−a7ε) + a8, (5)

s4/3(ε) = a0 + a1ε
a2 + a3 exp[a4ε] + a5ε

a6 exp[a7ε] (6)

and

T (ε) = ε + p(ε) ≡ 1
. (7)
s(ε) ds(ε)/dε
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Here, Γ (s, x) = ∫ ∞
x

ts−1 exp[−t] dt denotes the upper incomplete Γ -function. These ansatz-
functions can provide excellent descriptions of our numerical EoS-results with proper choices 
for the entering parameters. We stress, that the parameters ai in p(ε) and in s4/3(ε) in Eqs. (5)
and (6) are not meant to be the same: we use the same symbols only for practical purposes.

It turns out that, for an accurate description of the thermodynamic quantities, it becomes 
mandatory to split the parametrizations into different regions in ε and to fit the parameters 
for each ε-region individually. We define as the splitting-points ε0 = 0.001538 GeV/fm3, 
ε1 = 0.032084 GeV/fm3, ε2 = 0.567420 GeV/fm3, ε3 = 1.2 GeV/fm3, ε4 = 9.9 GeV/fm3 and 
ε5 = 100 GeV/fm3. The points ε3, ε4 and ε5 are only of relevance for the parametrization of 
s4/3(ε) in Eq. (6) and, therefore, influence T (ε), but play no role for the parametrization of p(ε). 
The parameter-values entering p(ε) and s4/3(ε) in the different ε-regimes are summarized in 
Table 2. With these, one obtains p in units of GeV/fm3, s in units of 1/fm3 and T from Eq. (7)
in units of GeV for ε given in units of GeV/fm3. The high precision in the provided parametriza-
tions is motivated by our goal to maintain thermodynamic consistency and continuity in the 
second derivatives at the splitting-points εi up to a high numerical accuracy.

The squared speed of sound c2
s (ε) as a function of ε can be determined from p(ε) given in 

Eq. (5) as

c2
s (ε) = a0 + a1ε

a2 + a3 exp[a4ε] + a5ε
a6 exp[a7ε]. (8)

By employing the parameter-values for p(ε) from Table 2, we find an excellent agreement be-
tween Eq. (8) and the c2

s -result obtained by numerically differentiating our tabulated p(ε)-results 
within the temperature interval 30 MeV ≤ T ≤ 300 MeV. Outside of this range, the quantitative 
agreement is still good, where c2

s exhibits the same qualitative behavior as our numerical results 
with asymptotics c2

s (ε) → 0 for ε → 0 and c2
s (ε) → 1/3 for ε → ∞.

The temperature-dependence of c2
s obtained by numerical differentiation is shown in Fig. 4

(solid curve) and confronted with the lattice QCD results available from the WB-Collabora-
tion [22]. Our curve agrees with the lattice QCD data within error-bars: we also find a rather 
large c2

s (T ) in the confinement transition region. This indicates that our EoS is rather stiff com-
pared to some previously considered equations of state, as e.g. in [30], but comparable in stiffness 
with the equation of state presented in [31].

When including partial chemical equilibrium into the EoS, the parametrizations discussed 
above have to be modified only for ε < εch. The different values of εch, depending on the con-
sidered value for the chemical freeze-out temperature, are listed in the caption of Table 3. For 
ε < εch, we modify our parametrizations to

p(ε) = b1ε
b2 + b3

(
exp[b4ε] − 1

)
, (9)

s4/3(ε) = b0ε + b1ε
b2 (10)

and

T (ε) = b0ε + b1ε
b2 + b3ε

b4 exp[b5ε]. (11)

Correspondingly, the squared speed of sound follows now from Eq. (9) as

c2
s (ε) = b1b2ε

b2−1 + b3b4 exp[b4ε]. (12)

We stress that the parameters bi entering p(ε), s4/3(ε) and T (ε) in Eqs. (9)–(11) are also here 
not meant to be the same.
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arametrizations of our numerical results for the case of 
m3, ε1 = 0.032084 GeV/fm3, ε2 = 0.567420 GeV/fm3, 
V/fm3 one finds p in units of GeV/fm3 and s in units of 

a6 a7 a8

487526 0.0956908 −388.771 −0.000326
739.605 2.15326 −122.409 0.2909065
3735 0.1003 −2.3275 −1.321345
0.0774 5.7231 −3.3064 −0.018477

0084625 1.42094 1345.43
5649 1.0959 9.9955
7934 1.0337 −0.0976
7.78303 0.5725142 0.0039527
7.96072 0.257059 −0.056146
18.69299 0.179563 −0.009929

1. 1.
Table 2
Summary of the parameter-values entering Eqs. (5) and (6) for p(ε) and s4/3(ε), respectively, providing practical p
chemical equilibrium in the hadronic phase. The fits are optimized in different ε-regimes, where ε0 = 0.001538 GeV/f
ε3 = 1.2 GeV/fm3, ε4 = 9.9 GeV/fm3 and ε5 = 100 GeV/fm3. The parameters are given in such units that for ε in Ge
1/fm3.

Quantity ε-region a0 a1 a2 a3 a4 a5

p ε < ε0 0.275255 2 524 790 2711.84 −0.275255 −274.84 0.
ε0 < ε < ε1 0.843569 −60.3954 3.203 −0.601971 2.06599 −
ε1 < ε < ε2 4.7406 −4.1849 0.1807 −5.4941 −1.8539 4.
ε2 < ε 1/3 −0.1310034 −0.4179 −0.0230894 −0.2797 −

s4/3 ε < ε0 2.12885 12.50217 1.07208 −2.12885 1.0032 0.
ε0 < ε < ε1 −0.000165 9.1583717 1.0786 0. 1. 0.
ε1 < ε < ε2 −0.0003645 5.763101 1.3863 −0.0000745 0.3105 6.
ε2 < ε < ε3 −0.655216 18.36345 0.9912019 2.02343 0.00355427 −
ε3 < ε < ε4 1.49791 14.83324 1.02947504 3.244652 −0.0372865 −
ε4 < ε < ε5 −19.025 16.25163 1.012862 33.989528 −0.00763319 −
ε5 < ε −33.07911 16.978858 1.00512 0. 1. 0.
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Fig. 4. (Color online.) Temperature-dependence of the squared speed of sound c2
s (T ). The solid curve shows the result 

obtained from a numerical differentiation of our tabulated p(ε)-results for the EoS, in which the HRG is in chemical 
equilibrium. For comparison, the symbols depict available equilibrium lattice QCD data from [22]. The dashed curves 
highlight c2

s (T ) when instead partial chemical equilibrium is assumed in the hadronic phase. We consider Tch/MeV =
145, 150, 155 and 160 (from top to bottom, respectively).

Table 3
Summary of the parameter-values entering Eqs. (9), (10) and (11) for p(ε), s4/3(ε) and T (ε), respectively, provid-
ing practical parametrizations of our numerical results for ε < εch when partial chemical equilibrium is considered in 
the hadronic phase. For ε > εch , the thermodynamic quantities are given by Eqs. (5)–(7) together with Table 2. The 
optimized fit-parameters depend on the value of εch , which varies with Tch , where εch = 0.18675523 GeV/fm3 for 
Tch = 0.145 GeV, εch = 0.24117503 GeV/fm3 for Tch = 0.150 GeV, εch = 0.30993163 GeV/fm3 for Tch = 0.155 GeV
and εch = 0.39623763 GeV/fm3 for Tch = 0.160 GeV. The parameters are given in units, such that for ε in GeV/fm3

one finds p in units of GeV/fm3, s in units of 1/fm3 and T in units of GeV.

Tch/GeV Quantity b0 b1 b2 b3 b4 b5

0.145 p 0.20421265 1.2147 −0.006941 −10.9535
s4/3 −5.727246 17.2995 1.0833
T −0.0570889 0.5799 0.1412 −0.3744 0.0923 −0.3201

0.150 p 0.19620877 1.2200 −0.007064 −10.4533
s4/3 −4.855376 16.5519 1.0928
T −0.838232 1.9880 0.1842 −1.7244 0.1689 −0.5845

0.155 p 0.18633308 1.2194 −0.00730055 −9.6563
s4/3 −4.4274 16.2165 1.0998
T −1.4628554 2.5136 0.2741 −2.1268 0.2575 −0.8329

0.160 p 0.17665061 1.2121 −0.00726805 −9.0082
s4/3 −4.1890264 16.0463 1.1055
T −1.2085036 2.5073 0.2522 −2.1677 0.2371 −0.6475

By fitting the parametrizations in Eqs. (9)–(11) to our tabulated, numerical results for ε < εch, 
we find quite accurate descriptions of the thermodynamic quantities for the parameter-values 
summarized in Table 3. Again, the high precision in the parameters is given in order to maintain 
consistency in our approach at εch with a high-level of accuracy. With these parameters, p, s
and T are obtained in units of GeV/fm3, 1/fm3 and GeV, respectively, for ε given in units 
of GeV/fm3. Moreover, the above parametrizations satisfy the physical conditions T (ε) → 0, 
p(ε) → 0 and s(ε) → 0 for ε → 0. The qualitative behavior of the squared speed of sound is also 
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nicely reproduced with, however, different asymptotics (in fact one obtains positive c2
s (ε → 0) =

b3b4 < 1/3, while our numerical results tend toward 0).
The temperature-dependence of c2

s as determined from a numerical differentiation of our tabu-
lated results is shown in Fig. 4 (dashed curves). One observes a discontinuity in c2

s (T ) at T = Tch, 
which is characteristic for the chemical freeze-out. Evidently, as expected the behavior of c2

s (T )

in the non-equilibrium situation is different from the trend seen in equilibrium lattice QCD ther-
modynamics.

In summary, we constructed QCD equations of state for vanishing net-baryon density based 
at high T on recent continuum-extrapolated lattice QCD results in the physical quark mass 
limit [23], which were continuously combined with an HRG model at low T . The latter was 
considered to be either in chemical equilibrium or in partial chemical equilibrium. In the chemi-
cal equilibrium case, our baseline EoS in terms of the squared speed of sound shows only minor 
deviations of at most a few percent from the EoS presented in [31] such that, presumably, sig-
nificant differences in the standard observables studied in hydrodynamic simulations are not to 
be expected from this EoS. Nevertheless, the focus of our work lies on the inclusion of partial 
chemical equilibrium for a more accurate description of the experimental situation, where we 
studied different values for the chemical freeze-out temperature Tch within the range presently 
expected from first-principle approaches [25]. In view of the non-negligible differences in the 
temperature and chemical potential evolution of the system for different Tch-values our work, 
thus, allows one to study the possible influence of deviations in Tch on the particle spectra in 
more detail compared to the work presented in [18,31].

Our results, being available in a tabulated form [45], can be directly applied in the hydro-
dynamic modeling of high-energy heavy-ion collisions at the LHC and at RHIC for top beam 
energies. For convenience, we also provided practical parametrizations of our results, in partic-
ular, for the effective chemical potentials μi(T ) of the stable hadrons in the partial chemical 
equilibrium case and for the temperature. Their knowledge is crucial for a determination of final 
state hadron abundances and spectra.

We have restricted ourselves to the nB = 0 case in this work. In general, however, our 
approach allows for respecting the conservation of finite values for nB/s and nQ/s (while 
nS/s = 0) as relevant for heavy-ion collisions. Corresponding results for non-zero (although 
not too large) values of the associated chemical potentials will be reported in a forthcoming 
publication.
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