2,995 research outputs found

    Degradation of electro-optic components aboard LDEF

    Get PDF
    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens

    A final look at LDEF electro-optic systems components

    Get PDF
    Postrecovery characteristics of LDEF electro-optic components from the GTRI tray are compared with their prelaunch characteristics and with the characteristics of similar components from related experiments. Components considered here include lasers, light-emitting diodes, semiconducting radiation detectors and arrays, optical substrates, filters, and mirrors, and specialized coatings. Our understanding of the physical effects resulting from low earth orbit are described, and guidelines and recommendations for component and materials choices are presented

    Degradation of optical components in space

    Get PDF
    This report concerns two types of optical components: multilayer filters and mirrors, and self-scanned imaging arrays using charge coupled device (CCD) readouts. For the filters and mirrors, contamination produces a strong reduction in transmittance in the ultraviolet spectral region, but has little or no effect in the visible and infrared spectral regions. Soft substrates containing halides are unsatisfactory as windows or substrates. Materials choice for dielectric layers should also reflect such considerations. Best performance is also found for the harder materials. Compaction of the layers and interlayer diffusion causes a blue shift in center wavelength and loss of throughput. For sensors using CCD's, shifts in gate voltage and reductions in transfer efficiency occur. Such effects in CCD's are in accord with expectations of the effects of the radiation dose on the device. Except for optical fiber, degradation of CCD's represents the only ionizing-radiation induced effect on the Long Duration Exposure Facility (LDEF) optical systems components that has been observed

    Investigation of the effects of long duration space exposure on active optical system components

    Get PDF
    This experiment was exposed to the space environment for 6 years on the Long Duration Exposure Facility (LDEF). It investigated quantitatively the effects of the long-duration space exposure on the relevant performance parameters of a representative set of electron-optic system components, including lasers, radiation detectors, filters, modulators, windows, and other related components. It evaluated the results and implications of the measurements indicating real or suspected degradation mechanisms. This information will be used to establish guidelines for the selection and use of components for space-based, electro-optic systems

    Stability and Instability of Extreme Reissner-Nordstr\"om Black Hole Spacetimes for Linear Scalar Perturbations I

    Full text link
    We study the problem of stability and instability of extreme Reissner-Nordstrom spacetimes for linear scalar perturbations. Specifically, we consider solutions to the linear wave equation on a suitable globally hyperbolic subset of such a spacetime, arising from regular initial data prescribed on a Cauchy hypersurface crossing the future event horizon. We obtain boundedness, decay and non-decay results. Our estimates hold up to and including the horizon. The fundamental new aspect of this problem is the degeneracy of the redshift on the event horizon. Several new analytical features of degenerate horizons are also presented.Comment: 37 pages, 11 figures; published version of results contained in the first part of arXiv:1006.0283, various new results adde

    Strichartz estimates on Schwarzschild black hole backgrounds

    Get PDF
    We study dispersive properties for the wave equation in the Schwarzschild space-time. The first result we obtain is a local energy estimate. This is then used, following the spirit of earlier work of Metcalfe-Tataru, in order to establish global-in-time Strichartz estimates. A considerable part of the paper is devoted to a precise analysis of solutions near the trapping region, namely the photon sphere.Comment: 44 pages; typos fixed, minor modifications in several place

    Modeling and characterization of an electrowetting based single mode fiber variable optical attenuator

    Get PDF
    We report an optofluidics-based variable optical attenuator (VOA) employing a tapered side-polished single-mode optical fiber attached to an electrowetting-on-dielectric (EWOD) platform. The side polishing of the fiber cladding gives access to the evanescent field of the guided mode, while the EWOD platform electrically controls the stepwise translation of a liquid droplet along the variable thickness polished cladding of the fiber. The penetration of the evanescent field into the droplet leads to tunneling of optical power from the fiber core to the droplet, from where it is radiatively lost. As a result of the variable cladding thickness, the position of the droplet along the length of the polished fiber determines the degree of penetration of the evanescent field into the droplet. The droplet position can be electrically changed; thus, controlling the optical power loss from the fiber. This approach has been used to demonstrate an optofluidic continuous-fiber VOA typically providing up to 26 dB of broadband attenuation in the 1550-nm transmission window, with a wavelength dependent loss less than 1.1 dB. In this paper, we present the theoretical modeling and experimental characterization of the system, discussing the influence of the design parameters on the performance of this VOA

    Counterflow Extension for the F.A.S.T.-Model

    Full text link
    The F.A.S.T. (Floor field and Agent based Simulation Tool) model is a microscopic model of pedestrian dynamics, which is discrete in space and time. It was developed in a number of more or less consecutive steps from a simple CA model. This contribution is a summary of a study on an extension of the F.A.S.T-model for counterflow situations. The extensions will be explained and it will be shown that the extended F.A.S.T.-model is capable of handling various counterflow situations and to reproduce the well known lane formation effect.Comment: Contribution to Crowds and Cellular Automata Workshop 2008. Accepted for publication in "Cellular Automata -- 8th International Conference on Cellular Automata for Research and Industry, ACRI 2008, Yokohama, Japan, September 23-26, Springer 2008, Proceedings

    In-line single-mode fiber variable optical attenuator based on electrically addressable microdroplets

    Get PDF
    We report an in-line, fiber optic, broadband variable optical attenuator employing a side-polished, single-mode optical fiber integrated on a digital microfluidics platform. The system is designed to electrically translate a liquid droplet along the polished surface of an optical fiber using electrowetting forces. This fiber optic device has the advantage of no moving mechanical parts and lends itself to miniaturization. A maximum attenuation of 25 dB has been obtained in the wavelength range between 1520 nm and 1560 nm

    Eleven years of monitoring the Seyfert 1 Mrk 335 with Swift: Characterizing the X-ray and UV/optical variability

    Full text link
    The narrow-line Seyfert 1 galaxy (NLS1) Mrk 335 has been continuously monitored with Swift since May 2007 when it fell into a long-lasting, X-ray low-flux interval. Results from the nearly 11 years of monitoring are presented here. Structure functions are used to measure the UV-optical and X-ray power spectra. The X-ray structure function measured between 10-100 days is consistent with the flat, low-frequency part of the power spectrum measured previously in Mrk 335. The UV-optical structure functions of Mrk 335 are comparable with those of other Seyfert 1 galaxies and of Mrk 335 itself when it was in a normal bright state. There is no indication that the current X-ray low-flux state is attributed to changes in the accretion disc structure of Mrk 335. The characteristic timescales measured in the structure functions can be attributed to thermal (for the UV) and dynamic (for the optical) timescales in a standard accretion disc. The high-quality UVW2 (~1800 A in the source frame) structure function appears to have two breaks and two different slopes between 10-160 days. Correlations between the X-ray and other bands are not highly significant when considering the entire 11-year light curves, but more significant behaviour is present when considering segments of the light curves. A correlation between the X-ray and UVW2 in 2014 (Year-8) may be predominately caused by an giant X-ray flare that was interpreted as jet-like emission. In 2008 (Year-2), possible lags between the UVW2 emission and other UV-optical waveband may be consistent with reprocessing of X-ray or UV emission in the accretion disc.Comment: Figure 8b has been corrected. 12 pages. Accepted for publication in MNRA
    corecore