23 research outputs found

    ACEseq – allele specific copy number estimation from whole genome sequencing

    Get PDF
    ACEseq is a computational tool for allele-specific copy number estimation in tumor genomes based on whole genome sequencing. In contrast to other tools it features GC-bias correction, unique replication timing-bias correction and integration of structural variant (SV) breakpoints for improved genome segmentation. ACEseq clearly outperforms widely used state-of-the art methods, provides a fully automated estimation of tumor cell content and ploidy, and additionally computes homologous recombination deficiency scores.</jats:p

    Mitochondrial phosphoproteomes are functionally specialized across tissues

    No full text
    Mitochondria are essential organelles involved in critical biological processes such as energy metabolism and cell survival. Their dysfunction is linked to numerous human pathologies that often manifest in a tissue-specific manner. Accordingly, mitochondrial fitness depends on versatile proteomes specialized to meet diverse tissue-specific requirements. Furthermore, increasing evidence suggests that phosphorylation may also play an important role in regulating tissue-specific mitochondrial functions and pathophysiology. We hypothesized that recent advances in mass spectrometry (MS)-based proteomics would now enable in-depth measurement to quantitatively profile mitochondrial proteomes along with their matching phosphoproteomes across tissues. We isolated mitochondria from mouse heart, skeletal muscle, brown adipose tissue, kidney, liver, brain, and spleen by differential centrifugation followed by separation on Percoll gradients and high-resolution MS analysis of the proteomes and phosphoproteomes. This in-depth map substantially quantifies known and predicted mitochondrial proteins and provides a resource of core and tissue modulated mitochondrial proteins (mitophos.de). We also uncover tissue-specific repertoires of dozens of kinases and phosphatases. Predicting kinase substrate associations for different mitochondrial compartments indicates tissue-specific regulation at the phosphoproteome level. Illustrating the functional value of our resource, we reproduce mitochondrial phosphorylation events on DRP1 responsible for its mitochondrial recruitment and fission initiation and describe phosphorylation clusters on MIGA2 linked to mitochondrial fusion

    Rapid Profiling of Protein Complex Reorganization in Perturbed Systems

    No full text
    Protein complexes constitute the primary functional modules of cellular activity. To respond to perturbations, complexes undergo changes in their abundance, subunit composition, or state of modification. Understanding the function of biological systems requires global strategies to capture this contextual state information. Methods based on cofractionation paired with mass spectrometry have demonstrated the capability for deep biological insight, but the scope of studies using this approach has been limited by the large measurement time per biological sample and challenges with data analysis. There has been little uptake of this strategy into the broader life science community despite its rich biological information content. We present a rapid integrated experimental and computational workflow to assess the reorganization of protein complexes across multiple cellular states. The workflow combines short gradient chromatography and DIA/SWATH mass spectrometry with a data analysis toolset to quantify changes in a complex organization. We applied the workflow to study the global protein complex rearrangements of THP-1 cells undergoing monocyte to macrophage differentiation and subsequent stimulation of macrophage cells with lipopolysaccharide. We observed substantial proteome reorganization on differentiation and less pronounced changes in macrophage stimulation. We establish our integrated differential pipeline for rapid and state-specific profiling of protein complex organization.ISSN:1535-3893ISSN:1535-390

    Systematic detection of functional proteoform groups from bottom-up proteomic datasets

    No full text
    To a large extent functional diversity in cells is achieved by the expansion of molecular complexity beyond that of the coding genome. Various processes create multiple distinct but related proteins per coding gene – so-called proteoforms – that expand the functional capacity of a cell. Evaluating proteoforms from classical bottom-up proteomics datasets, where peptides instead of intact proteoforms are measured, has remained difficult. Here we present COPF, a tool for COrrelation-based functional ProteoForm assessment in bottom-up proteomics data. It leverages the concept of peptide correlation analysis to systematically assign peptides to co-varying proteoform groups. We show applications of COPF to protein complex co-fractionation data as well as to more typical protein abundance vs. sample data matrices, demonstrating the systematic detection of assembly- and tissue-specific proteoform groups, respectively, in either dataset. We envision that the presented approach lays the foundation for a systematic assessment of proteoforms and their functional implications directly from bottom-up proteomic datasets

    SECAT: Quantifying Protein Complex Dynamics across Cell States by Network-Centric Analysis of SEC-SWATH-MS Profiles

    No full text
    Protein-protein interactions (PPIs) play critical functional and regulatory roles in cellular processes. They are essential for macromolecular complex formation, which in turn constitutes the basis for protein interaction networks that determine the functional state of a cell. We and others have previously shown that chromatographic fractionation of native protein complexes in combination with bottom-up mass spectrometric analysis of consecutive fractions supports the multiplexed characterization and detection of state-specific changes of protein complexes. In this study, we extend co-fractionation and mass spectrometric data analysis to perform quantitative, network-based studies of proteome organization, via the size-exclusion chromatography algorithmic toolkit (SECAT). This framework explicitly accounts for the dynamic nature and rewiring of protein complexes across multiple cell states and samples, thus, elucidating molecular mechanisms that are differentially implemented across different experimental settings. Systematic analysis of multiple datasets shows that SECAT represents a highly scalable and effective methodology to assess condition/state-specific protein-network state. A record of this paper’s transparent peer review process is included in the Supplemental Information.ISSN:2405-472

    Complex‐centric proteome profiling by SEC ‐ SWATH ‐ MS

    Get PDF
    Proteins are major effectors and regulators of biological processes that can elicit multiple functions depending on their interaction with other proteins. The organization of proteins into macromolecular complexes and their quantitative distribution across these complexes is, therefore, of great biological and clinical significance. In this paper, we describe an integrated experimental and computational technique to quantify hundreds of protein complexes in a single operation. The method consists of size exclusion chromatography (SEC) to fractionate native protein complexes, SWATH/DIA mass spectrometry to precisely quantify the proteins in each SEC fraction, and the computational framework CCprofiler to detect and quantify protein complexes by error‐controlled, complex‐centric analysis using prior information from generic protein interaction maps. Our analysis of the HEK293 cell line proteome delineates 462 complexes composed of 2,127 protein subunits. The technique identifies novel sub‐complexes and assembly intermediates of central regulatory complexes while assessing the quantitative subunit distribution across them. We make the toolset CCprofiler freely accessible and provide a web platform, SECexplorer, for custom exploration of the HEK293 proteome modularity.ISSN:1744-429

    Rapid profiling of protein complex reorganization in perturbed systems

    No full text
    Protein complexes constitute the primary functional modules of cellular activity. To respond to perturbations, complexes undergo changes in their abundance, subunit composition, or state of modification. Understanding the function of biological systems requires global strategies to capture this contextual state information. Methods based on cofractionation paired with mass spectrometry have demonstrated the capability for deep biological insight, but the scope of studies using this approach has been limited by the large measurement time per biological sample and challenges with data analysis. There has been little uptake of this strategy into the broader life science community despite its rich biological information content. We present a rapid integrated experimental and computational workflow to assess the reorganization of protein complexes across multiple cellular states. The workflow combines short gradient chromatography and DIA/SWATH mass spectrometry with a data analysis toolset to quantify changes in a complex organization. We applied the workflow to study the global protein complex rearrangements of THP-1 cells undergoing monocyte to macrophage differentiation and subsequent stimulation of macrophage cells with lipopolysaccharide. We observed substantial proteome reorganization on differentiation and less pronounced changes in macrophage stimulation. We establish our integrated differential pipeline for rapid and state-specific profiling of protein complex organization

    Complex-centric proteome profiling by SEC-SWATH-MS for the parallel detection of hundreds of protein complexes

    No full text
    Most catalytic, structural and regulatory functions of the cell are carried out by functional modules, typically complexes containing or consisting of proteins. The composition and abundance of these complexes and the quantitative distribution of specific proteins across different modules are therefore of major significance in basic and translational biology. However, detection and quantification of protein complexes on a proteome-wide scale is technically challenging. We have recently extended the targeted proteomics rationale to the level of native protein complex analysis (complex-centric proteome profiling). The complex-centric workflow described herein consists of size exclusion chromatography (SEC) to fractionate native protein complexes, data-independent acquisition mass spectrometry to precisely quantify the proteins in each SEC fraction based on a set of proteotypic peptides and targeted, complex-centric analysis where prior information from generic protein interaction maps is used to detect and quantify protein complexes with high selectivity and statistical error control via the computational framework CCprofiler (https://github.com/CCprofiler/CCprofiler). Complex-centric proteome profiling captures most proteins in complex-assembled state and reveals their organization into hundreds of complexes and complex variants observable in a given cellular state. The protocol is applicable to cultured cells and can potentially also be adapted to primary tissue and does not require any genetic engineering of the respective sample sources. At present, it requires similar to 8 d of wet-laboratory work, 15 d of mass spectrometry measurement time and 7 d of computational analysis
    corecore