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Article

Complex-centric proteome profiling
by SEC-SWATH-MS
Moritz Heusel1,2,†, Isabell Bludau1,3,† , George Rosenberger1 , Robin Hafen1,4, Max Frank1,

Amir Banaei-Esfahani1,3 , Audrey van Drogen1, Ben C Collins1 , Matthias Gstaiger1,** &

Ruedi Aebersold1,5,*

Abstract

Proteins are major effectors and regulators of biological
processes that can elicit multiple functions depending on
their interaction with other proteins. The organization of
proteins into macromolecular complexes and their quantita-
tive distribution across these complexes is, therefore, of great
biological and clinical significance. In this paper, we describe
an integrated experimental and computational technique to
quantify hundreds of protein complexes in a single operation.
The method consists of size exclusion chromatography (SEC)
to fractionate native protein complexes, SWATH/DIA mass
spectrometry to precisely quantify the proteins in each SEC
fraction, and the computational framework CCprofiler to
detect and quantify protein complexes by error-controlled,
complex-centric analysis using prior information from generic
protein interaction maps. Our analysis of the HEK293 cell line
proteome delineates 462 complexes composed of 2,127 protein
subunits. The technique identifies novel sub-complexes and
assembly intermediates of central regulatory complexes while
assessing the quantitative subunit distribution across them.
We make the toolset CCprofiler freely accessible and provide
a web platform, SECexplorer, for custom exploration of the
HEK293 proteome modularity.
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Introduction

Molecular life science research over the last decades has been trans-

formed by technological advances that aim at exploring biological

processes as complex systems of interacting molecules. A range of

high-throughput technologies to analyze genomes, transcriptomes,

metabolomes, and proteomes now provide accurate molecular inven-

tories of biological samples at high throughput. Yet, the notion of a

modular biology (Hartwell et al, 1999) states that for the definition of

the functional state of a cell the organization of cellular molecules

into functional modules is as important as the composition of the

respective “omes”. This notion has been supported by decades of

research into the structure and function of specific macromolecular

complexes but the task to systematically probe the organization of

biomolecules in the cell has remained technologically challenging.

Among all macromolecular modules those containing or consisting of

proteins are particularly functionally important because they catalyze

and control the vast majority of biochemical functions and constantly

adapt to and determine the state of the cell.

For high-throughput analytical techniques to generate datasets

that are quantitative, reproducible and contain low error rates, it

has frequently been useful to use prior information to guide the

acquisition or analysis of the respective data (Ahrens et al, 2010).

For mass spectrometry-based proteomics, the concept of peptide-

centric analysis (Ting et al, 2015) uses reference fragment ion spec-

tra as prior information to detect and quantify proteolytic peptides

in complex samples as surrogates for their corresponding proteins.

Peptide-centric analyses have been implemented at a moderate level

of multiplexing (tens to few hundred proteins) via selected reaction

monitoring (SRM; Picotti & Aebersold, 2012) and parallel reaction

monitoring (PRM; Bourmaud et al, 2016). More recently, massively

parallel data-independent analysis strategies (DIA) exemplified by

SWATH-MS have been developed that reproducibly quantify tens of

thousands of peptides from single sample injections into a mass
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spectrometer (Gillet et al, 2012; Röst et al, 2014; Navarro et al,

2016). In this manuscript, we describe and implement the concept

of complex-centric analysis. It is intended to systematically detect

protein complexes in biological samples and to quantify the distribu-

tion of proteins across protein complex instances. Complex-centric

analysis uses generic protein interaction information as prior infor-

mation and conceptually extends the principles of peptide-centric

analysis to the level of protein complexes.

Complex-centric proteome profiling consists of the robust and

proven technique of size exclusion chromatography (SEC) to fraction-

ate native protein complexes, SWATH/DIA mass spectrometry to

precisely and reproducibly quantify proteins across SEC fractions and

a new computational analysis strategy implemented in CCprofiler.

CCprofiler carries out fast and automated detection of protein

complexes in datasets of quantitative protein maps from consecutive

SEC fractions and controls error rates by means of a target-

decoy-based statistical model. It uses prior information from generic

protein interaction maps to detect and quantify protein complexes in

the sample. Complex-centric protein profiling is a new implementa-

tion of the general concept of protein correlation profiling (Dong

et al, 2008; Liu et al, 2008; Rudashevskaya et al, 2016) that distin-

guishes itself from earlier implementations (Havugimana et al, 2012;

Kirkwood et al, 2013; Kristensen & Foster, 2014) by the following: (i)

the use of SWATH-MS for the data generation provides complete

protein elution profiles for each detected protein at quantitative

accuracy and a wide dynamic range supporting the quantification of

even minor components of the proteome, (ii) the development of a

statistical model in CCprofiler that uses a target/decoy model to

calculate a FDR for detected complexes, and (iii) the use of prior

information from generic protein interaction maps to reduce the

erroneous assignment of co-eluting proteins to a complex.

A range of generic protein complex compendia have been

generated by different approaches that can be used as prior infor-

mation for complex-centric analysis. They include (i) the CORUM

reference database of complexes (Ruepp et al, 2010) generated by

curating results from classical biochemical and biophysical analy-

ses of protein complexes. CORUM presently contains 1,753

distinct models of human complexes consisting of 2,532 proteins;

(ii) the BioPlex network (Huttlin et al, 2015) and related protein

interaction databases, generated by the mass spectrometric identi-

fication of proteins co-purifying with affinity-tagged “bait”

proteins (AP-MS). BioPlex v1.0 describes 23,744 interactions

among 7,688 proteins identified as interactors of 2,594 bait

proteins; (iii) the STRING database (Franceschini et al, 2013), an

organism-wide protein–protein interaction network generated by

the computational integration of multiple lines of evidence for

physical and functional associations. STRING (v10) contains

383,626 high-confidence interactions (score ≥ 900) among 10,248

human proteins, and (iv) protein complex databases generated by

correlation profiling of extensive chromatographic co-fractionation

of native complexes, followed by DDA mass spectrometry

(Havugimana et al, 2012; Kirkwood et al, 2013; Kristensen &

Foster, 2014). In combination, these interaction compendia consti-

tute an extensive, yet incomplete representation of the organiza-

tion of the (human) proteome into functional complexes and thus

provide an essential resource for the implementation of the

complex-centric analysis strategy that is supported by the compu-

tational framework CCprofiler.

We benchmark the method, including the CCprofiler algorithm,

against a manually curated set of protein complexes and evaluate its

complex identification performance against a reference method

consisting of multidimensional co-fractionation of native extracts

and DDA of individual fractions (Havugimana et al, 2012). The

results demonstrate high performance of the CCprofiler algorithm in

relation to manual benchmarking, with observed true-positive rates

of up to 91% (high-quality signals) at an FDR of 5%. The data

further show superior performance of the complex-centric approach

in recalling protein complexes compared to the reference method,

achieved at a significantly reduced experimental effort (81 vs. 1,163

fractions analyzed by LC-MS/MS). We applied the complex-centric

proteome profiling strategy to quantify complexes in a native extract

from HEK293 cells in exponential growth state. The results indicate

that 55% of the protein mass is present in the form of complexes

that distribute across distinct states of complex formation. The data

indicated quantitative complex signals for 462 cellular assemblies if

prior knowledge from the CORUM, BioPlex, and StringDB reference

databases was used and the results were cumulatively integrated.

The utility of quantifying the distribution of specific proteins across

different resolved sub-modules is exemplified by the identification

of previously unknown substructures of cellular effector complexes

such as the proteasome. Finally, we describe and provide access to

SECexplorer, an interactive online platform for customized expert

interpretation of quantitative co-fractionation protein profiles gener-

ated by SEC-SWATH-MS. We expect that the complex-centric analy-

sis method, the SEC-SWATH dataset representing the organization

of the proteome of the cycling HEK 293 cell line, and the computa-

tional tools to explore the data will find wide application in life

science research.

Results

Principles and main features of complex-centric
proteome analysis

We describe an integrated mass spectrometric and computational

method to systematically quantify the modular organization of the

proteome. The method is schematically illustrated in Fig 1A and

consists of five consecutive steps. First, complexes are extracted

from a biological sample under mild conditions that retain their

native form and fractionated according to their hydrodynamic radius

via high-resolution size exclusion chromatography (SEC). Second,

collected, consecutive fractions are subjected to bottom-up mass

spectrometric analysis using SWATH/DIA mass spectrometry.

Collectively, the thus generated 81 SWATH/DIA maps constitute the

dataset that will ultimately be explored by complex-centric analysis

of protein SEC elution profiles (Step 5). To accurately quantify

protein elution along the SEC chromatographic fractions, peptides

are identified and quantified from the composite SWATH/DIA

dataset in step three by peptide-centric analysis (Rosenberger et al,

2014; Röst et al, 2014, 2016). Specifically, peptide query parameters

for tens of thousands of peptides are generated from a reference

spectral library and systematically queried across the dataset to

quantify each target peptide in each fraction (for the quantitative

peptide profiles, see Dataset EV1). The SEC-SWATH-MS workflow

(Steps 1–3) is highly reproducible across workflow replicates
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(Appendix Fig S1). Fourth, CCprofiler is used to infer quantitative

protein elution profiles from the peptide elution profiles across SEC

fractions (for details on peptide detection and protein inference

along the chromatographic fractions, see Appendix Figs S1 and S2;

for the quantitative protein profiles, see Dataset EV2). Fifth, the

protein SEC elution profiles are explored via complex-centric analy-

sis using CCprofiler along with prior protein interaction information,

to detect distinct protein modules and to determine the likelihood

that each detected module is correctly identified. Specifically, the

complex-centric analysis of CCprofiler in steps four and five entails

(Fig 1B) (i) protein quantification, (ii) target complex query set

generation based on prior protein connectivity information, (iii) the

generation of corresponding decoy complex query sets used for

downstream error estimation, (iv) detection of complex component

subunit co-elution signals along SEC fractions, (v) decoy-based

generation of a null model and according error estimation, and (vi)

compilation of the results into a report detailing unique, chromato-

graphically resolved instances of complexes and the distribution of

shared protein subunits across them (for details, see Materials and

Methods section and Appendix).

Benchmarking and performance assessment

We evaluated the performance of the described complex-centric

analysis method, (i) by benchmarking the CCprofiler algorithm and

error model against a manually curated reference dataset, (ii) by

comparing its performance with the performance of a reference

method consisting of multidimensional co-fractionation of native

complexes and the proteomic analysis of 1,163 fractions by data-

dependent mass spectrometry (Havugimana et al, 2012), and (iii)

by demonstrating increased sensitivity for complex detection as a

result of the improved consistency of quantification of SWATH/DIA

compared to data-dependent acquisition-based mass spectrometry

(Fig 2).

Using the data generated from the HEK293 cell line proteome, we

first benchmarked the automated performance of complex-centric

analysis and FDR estimation by CCprofiler against a manually

curated reference set (Fig 2A). The manual reference set was gener-

ated by manually testing protein complexes reported in the CORUM

knowledgebase (Ruepp et al, 2010) for evidence of complete

or partial co-elution signals among the protein-level SEC

A

B

Figure 1. Scheme of complex-centric proteome profiling by SEC-SWATH-MS.

A Workflow to quantify cellular complexes in five steps, extending the targeted analysis concept from peptide-centric interpretation of SWATH-MS data to the levels of
protein and protein complex detection from size exclusion chromatographic fractions (also see Appendix Figs S1 and S2).

B Specific steps of targeted, complex-centric analysis of co-fractionation data in the CCprofiler package.
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chromatograms of the respective protein subunits (criteria: ≥ 2

proteins show at least one chromatographic co-elution peak, as

judged by visual expert inspection). Taking the manually annotated

co-elution signals as ground truth, a false discovery rate (FDR) of

the complex detection in CCprofiler could be estimated based on the

number of automatically detected complex signals that were not

confirmed by the manual reference set (manual FDR, also see Mate-

rials and Methods section). This FDR based on manual reference

data was compared to the independent FDR estimation by the

target-decoy approach (TDA; decoy FDR), demonstrating that the

A

B

C

Figure 2.

4 of 22 Molecular Systems Biology 15: e8438 | 2019 ª 2019 The Authors

Molecular Systems Biology Complex-centric proteome profiling Moritz Heusel et al



target-decoy model provides accurate or slightly conservative error

estimates of the algorithm (Fig 2A). To further evaluate the sensitiv-

ity of CCprofiler, we tested the recall of manually detected signals by

the automated analysis. At 5% decoy-estimated FDR, the automated

CCprofiler analyses recalled 91% of the high-confidence manual

signals and 76% of all manually annotated signals (Fig 2A and

Appendix Fig S2A and B).

Second, we compared the performance of the complex-centric

analysis method with the performance of a reference de novo

complex analysis method implemented by Havugimana et al (2012)

which is based on multidimensional fractionation of native

complexes isolated from HEK293 and HeLa cells (Fig 2B). We

further include a dataset interrogating complexes of the U2OS cell

line by state-of-the-art Orbitrap-based SEC-DDA-MS (Larance et al,

2016) to deconvolute the relative contribution of data analysis

strategies and data structure (DDA or SWATH/DIA) to the obtained

complex profiles. To enable direct comparability of data quality

between our SEC-SWATH-MS and the external SEC-DDA-MS data,

we consider complexes reported in the original publication (Larance

et al, 2016) and the complexes detected from the same dataset

(non-crosslinked fractionation profiles only) by complex-centric

analysis using CCprofiler with error control equivalent to the analy-

sis of our SWATH-MS data.

As a metric, we evaluated the ability of either method to recall

complexes reported in the CORUM knowledgebase which consists

of a total of 1,753 non-redundant complexes. We considered a

complex as recalled if at least 50% of its CORUM annotated protein

subunits were stated as part of a reported complex by either method

(For details, see Materials and Methods section). The comparison

comprised all 622 reported complexes from Havugimana et al with

unknown error rate, compared to the set of complexes derived from

complex-centric analysis of our HEK293 SEC-SWATH-MS dataset

based on prior information from StringDB, filtered for 5% FDR. In

this case, we specifically exclude use of the CORUM priors to avoid

preferential recall by the complex-centric workflow and a circular

argument. The results show that the complex-centric analysis

method, without direct use of CORUM priors, recalls 565 complexes

from 81 fractions generated by single-dimensional SEC, compared to

561 complexes recalled from 1,163 fractions by multidimensional

fractionation (Havugimana et al, 2012) and 335 complexes recalled

by external SEC-DDA-MS (Larance et al, 2016; Fig 2B). The results

of this study and those of Havugimana et al show large agreement

of recovered CORUM complexes (379). However, both datasets also

uniquely recall parts of the CORUM complexes (182 complexes were

uniquely confirmed by Havugimana et al and 186 by our workflow,

respectively). Due to a lack of ground truth in terms of complexes

truly present in the respective sample, ultimate conclusions on the

correctness of each set of reported complexes remain challenging

and performance comparisons rest on the assumption of the refer-

ence complexes being equally expressed across the different

samples and cell lines analyzed in the respective studies. Under this

limitation, complex-centric analysis under equivalent error control

allows direct comparison of dataset information content between

previously deployed SEC-DDA-MS and our SEC-SWATH-MS data,

indicating substantial improvements with 249 and 565 reference

complexes recalled, respectively, partially attributable to improved

SEC fractionation and sampling.

These results demonstrate that our single-stage fractionation

SWATH-MS dataset with complex-centric analysis can recall compa-

rable portions of the protein complex landscape as compared to

previous multidimensional fractionation efforts including a fourteen

times higher number of sample injections coupled to de novo

complex analysis, and a significantly larger portion compared to an

external single-stage fractionation DDA mass spectrometry dataset

coupled to de novo complex detection or complex-centric re-analysis

(Larance et al, 2016).

Third, to assess the contribution of SWATH/DIA quantification

to the favorable recall results of the complex-centric proteome pro-

filing workflow, we compared results obtained by SWATH/DIA-

based protein quantification with those obtained by MS1 signal inte-

gration or spectral counting when the same samples were analyzed

by DDA. To generate the DDA dataset, aliquots of the peptide

samples of the 81 SEC fractions analyzed by SWATH/DIA were also

analyzed by data-dependent acquisition on the same TOF model

5,600 mass spectrometer that was also used for SWATH/DIA acqui-

sition. Results are shown in Fig 2C. At a respective protein-level

FDR control of 1%, SWATH/DIA quantifies 4,916 proteins across

the SEC fractions (≥ 2 independent proteotypic peptides, also see

Appendix Fig S2), whereas the DDA data covered 4,176 proteins

when analyzed by MS1 quantification based on the top2 intensity

sum, and 4,497 proteins when quantified by spectral counting (for

details on the respective data analysis strategies, see Materials and

Methods section). To further assess the differences between DIA

and DDA quantification, we next analyzed the three datasets with

respect to the consistency of protein detection and quantification

along consecutive SEC fractions (Fig 2C, left panel). The results

indicate that SWATH/DIA detects and quantifies a substantially

higher number of proteins in three or more consecutive fractions

◀ Figure 2. Benchmarking and performance assessment of complex-centric proteome profiling.

A Benchmark of CCprofiler algorithm and error model in reference to a manually curated reference set of signals displays conservative decoy-based FDR control and
high sensitivity, recalling 91% of high-quality co-elution signals at 5% target-decoy-derived FDR (for details, see methods benchmarking section and Appendix Fig S3A
and B).

B Assessment of complex identification performance based on the recovery of CORUM complexes. A CORUM complex is considered as recovered when more than 50%
of its annotated subunits are reported within one complex module in the respective dataset. CORUM complex recovery is compared between our complex-centric
analysis strategy using StringDB connectivity information priors (this study; CC StringDB), the complexes reported by Havugimana et al (2012), the complexes
reported by Larance et al (2016), and complexes detected by complex-centric analysis of the native SEC-MS data of Larance et al (2016) using StringDB as prior
connectivity information (Larance et al, 2016; CC StringDB).

C Comparison of SWATH-MS-based quantification to DDA-MS-based strategies (MS1 XIC and spectral counting) with regard to consistency (as judged based upon
protein-level SEC chromatogram robustness toward increasing requirements on the number of consecutive detections) and precision (judged based on the correlation
between sibling peptide SEC chromatograms) of quantification and overall performance in error-controlled complex-centric query of CORUM complexes in the
respective protein-level chromatogram sets (also see Appendix Fig S3C). TP, true-positive assignments according to error model, P, all positives.
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compared to DDA-based analyses. Next, the precision of quan-

tification as judged by global correlation among quantitative pro-

files of peptides originating from the same parent protein was

compared between SWATH/DIA and DDA quantification, showing

favorable quantification precision for SWATH/DIA (Fig 2C, middle

panel). Finally, the DIA and DDA datasets were compared by their

performance in detecting protein complexes (Fig 2C). At 5%

controlled FDR, complex-centric analysis provides co-elution

evidence for 621 vs. 298 and 343 of the CORUM set of query

complexes from quantitative data from SWATH-MS2, DDA-MS1,

and DDA-spectral counting, respectively. Overall, these results

demonstrate the favorable quantitative characteristics of SWATH/

DIA data compared to DDA data acquired on the same Triple TOF

model 5,600 mass spectrometer and the consequences of the

improved data quality on the results obtained by complex-centric

data analysis (also see Appendix Fig S3C).

The presented results demonstrate that automated complex-

centric analysis by CCprofiler allows protein complex detection at a

high sensitivity compared to manual inspection and that the system

provides an accurate decoy model for FDR estimation. The data

further suggest that complex-centric proteome profiling achieves

competitive complex detection performance of the overall workflow

with only 81 LC-MS/MS measurements compared to a significantly

larger scale multidimensional fractionation experiment. Further-

more, our comparative analysis attests SWATH/DIA more consis-

tent and precise quantification when compared to DDA-based

strategies and largely increased sensitivity in targeted, complex-

centric profiling under strict error rate control.

Complex-centric analysis of the HEK293 proteome: insights into
proteome modularity

We applied the complex-centric proteome profiling method to study

the modularity of the HEK293 cell line proteome. Specifically, we

first used the quantitative capacity of the method to estimate the

fraction of the observed proteome that was, under the extraction

conditions used, part of protein complexes as opposed to being

present in monomeric form. Second, we tested the ability of the

method to conclusively confirm the presence of specific complexes

in the sample, and third, we assessed the capability of the method

to quantify the distribution of specific proteins across different

complexes.

Complex assembly state of the HEK293 proteome

To globally assess the state of assembly of the HEK293 proteome

under the extraction and SEC conditions used, we quantified for

each of the 4,916 proteins identified in the dataset (see above and

Materials and Methods section) the proportion that was detected in

assembled or monomeric state, respectively. To assign a protein

signal to either state, we first calibrated a molecular weight scale of

proteins expected in each SEC fraction using a reference set of

proteins with known molecular weight (Appendix Fig S4). We then

applied this scale to all detected proteins. We assigned proteins to

an assembled state if they eluted from the SEC column at an appar-

ent molecular weight that was minimally two times higher than the

molecular weight indicated by the molecular weight scale (Fig 3A).

To assess the distribution of proteins across distinct molecular

weight regions, indicative of different assembly states as described

above, we performed a protein-centric analysis of the 58,792

peptide-level chromatograms (Fig 3A, compare Fig 1A, Step 4). Our

analysis identified 5,503 elution peaks for 4,065 proteins (see

Dataset EV3), with no defined elution peaks observable from the

remaining 851 proteins. Of these, 2,668 proteins (66%) were

observed in at least one assembled state, whereas 1,397 proteins

(34%) were detected only in monomeric state, based on the criteria

used (Fig 3B). Of the 4,065 proteins, 1,103 proteins (27%) eluted in

more than one peak and up to six elution peaks per protein were

detected (Fig 3C). Proteins that were detected in multiple assembled

states were enriched in proteasome components, ribosomal

proteins, and chaperones (Fig 3D). We further estimated the total

protein mass that was detected in assembled vs. monomeric state

by integrating the total MS signals observed for proteins assigned to

assembled or monomeric states. The results show that 55% of the

detected protein mass was in assembled state (Fig 3B).

Overall, these results indicate that a substantial fraction of the

HEK293 proteome was detected in an assembled state, in terms of

both distinct protein elution peaks and protein mass (Fig 3B). The

results further demonstrate the capability of the method to quantify

the distribution of proteins that are part of different distinct complex

assemblies (Fig 3C).

Complex-centric detection and quantification of complexes

As a next step, we used the complex-centric workflow to confirm

the presence of specific complexes in the HEK293 cell sample. The

query complexes were predicted from the CORUM, BioPlex, and

StringDB reference databases of protein interactions, respectively,

and the predictions were tested by CCProfiler using the 4,916 protein

SEC elution profiles detected in the dataset (Fig 4 and compare

Fig 1A, Step 5). The quantitative profiles of all MS detectable

proteins were considered, including those for which no protein-level

elution peak could be detected with high confidence, likely owed to

low abundance and low proteotypic peptide count (Appendix Fig

S2I, compare panel A), and rationalized by the fact that many of

these proteins are successfully detected as subunits of known

complexes validated in the data (exemplified in Appendix Fig S2J).

At a FDR of 5% computed by the target-decoy model of CCProfiler,

complex-centric analysis confirmed 621, 1,052, and 1,795 of the

tested query complexes from the three respective input databases

(for details, see Materials and Methods section, Appendix informa-

tion, and Datasets EV4–EV7). Notably, CCprofiler was able to confi-

dently detect complexes consisting of the whole set of proteins

predicted from the respective reference databases as well as

complex signals comprising only a subset of the reference proteins,

thus supporting the quantification of fully and partially assembled

complexes. Up to this point in the analysis workflow, each protein

complex signal detected by CCprofiler is directly linked to one speci-

fic protein complex query in the prior information dataset, derived

from either CORUM, BioPlex, or StringDB. However, some of the

subunits in each complex query might overlap with other complex

queries. One simple example would be that complex query A

consists of subunits WXYZ and complex query B consists of sub-

units VXYZ. If only XYZ are detected as a co-elution group in the

data, they will, until this point, be reported for both complex query

A and B. In order to retrieve truly unique signals, the reported
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complex signals can finally be collapsed based on a strategy that

considers (i) subunit composition and (ii) resolution in the chro-

matographic dimension. Taking the simple example from above, the

signal collapsing step will merge the two features from complex

query A (XYZ discovered from querying WXYZ) and B (XYZ discov-

ered from querying VXYZ) to one unique protein signal XYZ that is

independent from the original complex queries (for more details,

see Materials and Methods section, Appendix information on CCpro-

filer, and Appendix Fig S5). According to this strategy, our inte-

grated analysis across the three sets of complex queries identified

462 unique protein–protein complex signals (see Fig 4, Dataset EV4

and EV8). In addition to subunit composition, label-free SWATH-MS

intensity was leveraged to estimate subunit stoichiometry within the

detected complex signal ranges (Dataset EV4 stoichiometry_esti-

mated). While afflicted with error, estimated stoichiometries may

still provide insights into complex structure and modularity

(Appendix Fig S5B).

Complex-centric detection of complex variants

The results above established the capacity of complex-centric profil-

ing to detect and quantify subunit distribution across complexes that

are resolved by SEC and contain common proteins. We therefore

tested whether this capacity allowed us to detect novel protein

modules of potential functional significance. Among the 621

complex models that were confirmed by CCprofiler following predic-

tions from the CORUM database, 286 (46%) provided evidence of

proteins common to two (152) and up to five or more (27) distinct,

chromatographically separated complex instances (Fig 5A). It is

possible that some complexes artifactually disintegrated due to the

experimental conditions used. The likelihood that the observed

complexes reflect the biological state in vivo increases if additional

lines of evidence support the complex identification. For example,

the protein subunit fractionation profiles of the octameric COP9

signalosome complex, a central regulator of E3 ligase activity and

turnover, delineate both the CSN holo-complex consisting of all

eight subunits and a sub-complex consisting of subunits CSN1,

CSN3, and CSN8 (Fig 5A and B, and Appendix Fig S6A). The critical

role of CSN proteins in regulating the ubiquitin–proteasome system

and cellular homeostasis has sparked great interest in the analysis

of modules with variable subunit composition and in mechanisms

that regulate their activity (Dubiel et al, 2015). CSN proteins have

also been linked to cancerogenesis (Lee et al, 2011; Gummlich et al,

2013; Chen et al, 2014). Both CSN assemblies detected in the

HEK293 dataset elute with apparent molecular weights in

accordance with a 1:1 stoichiometry. Further, the proteins CSN1/3/

8 of the lower molecular weight complex form a connected sub-

module within the CSN holo-complex structure (Lingaraju et al,

2014; Fig 5C). The occurrence of the distinct CSN1/3/8 complex

detected in this study is consistent with protein chromatographic

data generated by co-fractionation-MS/MS in two other laboratories.

Wan et al (2015) fractionated mild lysates of HEK293 cells by

heparin ion exchange chromatography followed by MS analysis.

This separation modality, that is orthogonal to SEC, also showed

quantitative MS profiles that indicated distinct co-fractionation of

CSN1, CSN3, and CSN8 (Fig 5D, upper two panels). Kirkwood et al

(2013) fractionated mild lysates of U2OS cells by SEC and the quan-

titative profiles of the CSN subunits also display distinct co-elution

of CSN1, CSN3, and CSN8 at reduced molecular weight (Fig 5D,

lower panel). While the data of both research groups generally

support the model of CSN1/3/8 as a distinct cellular assembly,

neither of them reported it as distinct from CSN holo-complex, likely

owed to limited resolution of the experimental data and the pairwise

interaction-focused analysis workflows employed. Our findings

suggest a potential functional role for the CSN sub-complex CSN1/

3/8. We confirmed the mass spectrometric results with orthogonal

methods. First, we validated the observation of two distinct assem-

bly states, the CSN holo-complex and the CSN sub-complex with the

subunits CSN1/3/8, respectively, by immunoblotting the range of

SEC fractions that contained the CSN assemblies. Subunits CSN1,

CSN3, and CSN8, which participate in both assemblies, are detected

in both, high and lower molecular weight fractions, while holo-

complex-exclusive subunits CSN4, CSN5, and CSN7A could only be

detected in the higher molecular weight fractions, confirming the

mass spectrometric results (Fig 5C, lower right panel and

Appendix Fig S7C). Second, we tested whether CSN1, CSN3, and

CSN8 could stably assemble independent of the remaining CSN

components. We co-expressed human CSN1, CSN3, and CSN8 in

insect cells, whereby CSN8 was added with an N-terminal Strep(II)-

tag and CSN1 and CSN3 were expressed with an N-terminal His6-

tags to facilitate reciprocal purification of the complex. The thus

purified samples were analyzed by SDS–PAGE and resulting band-

ing patterns confirmed the formation of a stable trimer CSN1/3/8 in

the absence of the other CSN subunits that constitute the holo-

complex (Fig 5E). Together, these results support the finding from

the complex-centric identification of the CSN1/3/8 complex as a

distinct sub-complex of the human COP9 signalosome.

As a further example for the discovery of sub-complexes of a

large holo-complex, complex-centric proteome profiling detected six

variant signals from the subunit chromatograms of the 26S

◀ Figure 3. Detection of protein elution via protein-centric analysis.

A Peptide-level SEC chromatograms are grouped by UniprotKB identifier to detect co-elution signals indicative of protein elution ranges/peaks. Based on external size
calibration of the apparent analyte molecular weight per SEC fraction, signals can be attributed to likely assembled or monomeric state (also see Appendix Fig S4).
For TCPE, three distinct elution signals, numbered 1–3, are detected, two in the assembled and one in the monomer elution range.

B Global statistics of protein signal attribution to assembled or monomeric state. The majority of proteins (66%) and protein mass (55%) appear in assembled state in
SEC-SWATH-MS.

C Proteins are observed eluting in 1–6 distinct peaks and with a wide range of apparent vs. monomeric molecular weight ratios (distributions, left panels). Vertical lines
indicate an apparent to theoretical monomer molecular weight ratio of one (black, solid line) and the two-fold cut-off at or above which proteins are considered
assembled (red, dotted line, compare panel A). The molecular weight ratios of the three peaks detected for TCPE (displayed in A) are indicated. Many of the proteins
eluting in a single peak (top panel and bar) appear assembled. Proteins eluting multiple times (27% of the proteins) do so preferentially in the assembled range,
suggesting frequent participation in multiple differently sized macromolecular assemblies (lower panels and pie chart). For a list of all detected protein peaks, see
Dataset EV3.

D Proteins observed in multiple assembled peaks (n = 659) are enriched in components of the proteasome and other known large complex assemblies.
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proteasome (Fig 6A). Two of the six variants represent known

complexes, (i) the full 26S assembly and (ii) the 20S core particle

(Fig 6A). The remaining four co-elution signals point toward

complex variants of lower apparent molecular weight compared to

the 26S and 20S particles (apex fractions 39, 40, 42, and 46, ~ 107–

222 kDa) that consist predominantly of a and b subunits of the 20S

core particle. These reported complex variants point toward (iii) a b
subunit assembly of b2, b3, and b7 at fraction 39, (iv) a distinct

assembly of a subunits a2 and a6 at fraction 40, (v) an assembly

intermediate of the seven a subunits a1, a2, a3, a4, a5, a6, and a7
at fraction 42, and (vi) a b6 and proteasome regulatory subunit 8

assembly at fraction 46. The observed co-elution pattern is consis-

tent between the quantitative profiles of both workflow replicates

(Appendix Fig S6B). To evaluate whether the observed signals

represent products of disassembly or complex biogenesis intermedi-

ates, we manually extended the automated analysis of CCProfiler by

additionally aligning the quantitative protein traces of the chaper-

ones known to be involved in 20S maturation with the respective

complex subunits (Hirano et al, 2005; Fig 6B). Strikingly, the

distinctive co-elution of the early-stage-specific chaperone PSMG3/

PSMG4 dimer, constitutive chaperone PSMG1/PSMG2 dimer, and

the late-stage-specific proteasome maturation factor POMP allowed

us to classify the detected complex variants as early- and late-stage

intermediates of 20S biogenesis (Fig 6B). Notably, a systematic

manual analysis of the quantitative distribution of the proteasome

and chaperone subunits across the detected complex variants

suggests the a1/a3/a4/a5/a7 and a1–7/b2/b3/b6/b7 complexes,

respectively, as the predominant early and late assembly intermedi-

ates on the path to 20S assembly, as assigned by defined co-elution

and inferred interaction with the chaperones specifically involved in

early (PSMG3/PSMG4 dimer) stages or late stages (POMP) of 20S

proteasome biogenesis (Saeki & Tanaka, 2012; Fig 6C). Although

the automated workflow could not fully resolve and explain the

data, it successfully pointed toward a distinct assembly of the alpha

subunits (signal v) from the beta subunits (signal iii), as well as the

differential behavior of a2 and a6 compared to the other a subunits

(signal iv). No underlying biology could be determined for signal vi.

Together, these findings demonstrate the capacity of complex-

centric profiling to derive models of distinct variants of the queried

complexes. These models can be reinforced by extending automated

analyses by the alignment of additional proteins’ quantitative pro-

files followed by manual inspection.
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Figure 4. Complex-centric profiling of the HEK293 proteome by targeted query of CORUM, BioPlex and StringDB.

Schematic overview of the targeted, complex-centric analysis of the protein-level co-fractionation map recorded in SEC-SWATH-MS via CCprofiler. The three-tiered analysis

is centered on complex hypotheses (i.e., groups of proteins queried for co-elution in the SEC data) obtained from CORUM or formulated from BioPlex and StringDB. At

complex hypothesis FDR controlled to 5% via the decoy-based error model, co-elution evidence is confidently detected for 621, 1,052, and 1,795 (representing 35.4, 13.8, and

19.2%) of the queried CORUM-, BioPlex-, and StringDB-derived hypotheses, respectively. Heterogeneity and redundancy within and across the different hypothesis sets

translates to the co-elution signals retrieved, which, pieced together by collapsing on composition and SEC elution fraction, identify 462 distinct, chromatographically

resolved co-elution groups representative of distinct complexes or equisized families of complexes (also see Appendix Fig S5). For a list of all detected complex signals, see

Dataset EV4.
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SECexplorer—an interactive platform for complex-centric
exploration of the HEK293 proteome analyzed by SEC-SWATH-MS

To support customized, expert-driven and in-depth analyses of

protein co-fractionation profiles recorded by SEC-SWATH-MS of the

HEK293 cell line, we set up the web platform SECexplorer. SECex-

plorer enables visualization and interactive browsing of protein frac-

tionation profiles of user-defined sets of proteins. Users can perform

multiple tasks, including (i) testing of novel predicted models on

complex formation between candidate proteins or (ii) interrogating

C 

A B 

D E 

Figure 5.
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the profile sets of known modules for evidence pointing toward new

variants or (iii) manual refinement and extension of results obtained

from automated complex-centric profiling, for example, by extend-

ing the set of automatically detected complex components with

additional proteins, e.g., derived from the literature or from interac-

tion network context. Analyses are assisted by the CCprofiler algo-

rithm suggesting distinct co-elution signals and calculating their

expected to apparent molecular weight mismatch, among other

metrics, in order to speed up data interpretation by expert users.

SECexplorer can be accessed at https://sec-explorer.ethz.ch/

(Fig 7A). As an example for the use of SECexplorer, we followed up

on the peak shoulder at elevated molecular weight observed in the

CSN holo-complex co-elution signal (Compare Fig 5B). Overlaying

the elution profiles of known components of a E3-CRL substrate of

the COP9 signalosome (Cavadini et al, 2016) revealed defined co-

elution in the peak shoulder range, supporting the detection of a

likely E3-CRL-bound subpopulation of CSN holo-complexes

(Fig 7B). To derive a quantitative signal in the situation of only

partial chromatographic resolution, we employed a Gaussian decon-

volution mixture model, suggesting a substrate-bound fraction of

CSN holo-complex, across the 8 component subunits, of 22 � 3%

(replicate 1) and 25 � 4% (replicate 2, see Fig 7C, and Appendix

Fig S7A and B).

Discussion

In this paper, we describe complex-centric proteome profiling, an

integrated experimental and computational approach to detect and

quantify protein complexes isolated from their natural source, to

generate new insights into the modular organization of proteomes.

The need to systematically analyze the organization of the

proteome arises from the notion of a modular biology proposed by

Hartwell et al (1999). It essentially states that biochemical functions

are for the most part catalyzed and controlled by functional

modules, most frequently protein complexes, and that (genomic)

perturbation of complexes results in perturbed biochemical func-

tions and potentially in disease phenotypes. The notion of a modu-

lar biology thus extends the pioneering work of Pauling et al (1949)

on defining sickle cell anemia as a molecular disease to the

proteome level. Protein complexes and protein–protein interactions

have been studied extensively by a wide range of techniques and

have led to compendia of complexes (Ruepp et al, 2010; Huttlin

et al, 2015; Drew et al, 2017) and maps of protein interaction

networks (Rolland et al, 2014; Huttlin et al, 2015; Szklarczyk et al,

2015). These compendia have in common that they describe

generic, usually static instances of complexes and interactions

(Gstaiger & Aebersold, 2013; Mehta & Trinkle-Mulcahy, 2016;

Havugimana et al, 2017). To distinguish between different biochem-

ical states of a cell, it is also essential to determine qualitative and

quantitative differences in functional modules in different samples.

To date, this has been attempted by two broad approaches. The first

is based on microscopic methods including FRET (Song et al, 2011)

which provide outstanding resolution and precision of steric prox-

imity but are labor-intensive and focused on one to a few interac-

tions at a time. The second is based on a mass spectrometric

approach referred to as correlation profiling (Foster et al, 2006) in

which samples of native modules are separated into a set of frac-

tions and the protein contents of each fraction are determined by

quantitative mass spectrometry. The association of a protein to a

specific module is then asserted by the consistency of the quantita-

tive pattern of the protein in question with other proteins of the

same module (Ranish et al, 2003). Initially used to define the

composition of the specific modules such as the large RNA poly-

merase II preinitiation complex (Ranish et al, 2003) and the human

centrosome (Andersen et al, 2003), correlation profiling has also

been employed to broadly assign protein localization to different

subcellular compartments (Dunkley et al, 2006; Foster et al, 2006;

Yan et al, 2009) and the scope has been extended toward systemati-

cally interrogating protein–protein complexes by correlating protein

patterns in fractions obtained from different biochemical fractiona-

tion methods (Dong et al, 2008; Liu et al, 2008; Rudashevskaya

et al, 2016). Such studies have used different native complex sepa-

ration methods including SEC, IEX, density gradient centrifugation,

and blue native gels (Dong et al, 2008; Liu et al, 2008; Ruda-

shevskaya et al, 2016). The scientific scope has extended to the

analysis of cells of different species, culminating in the description

of hundreds of complexes in a single, albeit massive experiment

(Wan et al, 2015). Correlation profiling therefore has the potential

to determine the quantity and composition of hundreds of protein

modules in a single operation.

In the present paper, we describe a conceptual and technical

advance in the field of correlation profiling. As a conceptual

advance, we introduce the principle of complex-centric analysis. It

◀ Figure 5. Complex-centric detection of COP9 signalosome variant CSN1/3/8.

A For nearly half the CORUM complex hypotheses queried, two or more distinct subunit co-elution signals were detected (see methods and Appendix information on
CCprofiler).

B SEC elution profiles of the COP9 Signalosome subunits with apexes of the detected co-elution signals are indicated by vertical lines. Among the four distinct co-
elution signals detected from the eight canonical CSN subunits’ chromatograms (here with CSN7A, not CSN7B) are two distinct signals indicating distinct co-elution
of two different complex variants.

C Distinct co-elution of holo-CSN (observed at the expected fraction 35) and Mini-CSN CSN1/3/8 (observed eluting offset only one fraction late, F45, of the expected
fraction, F44). Expected fractions are estimated from the cumulative sum of one copy per component and external size calibration. Coloring adapted to highlight
subversion components and their partitioning across holo- and sub-complex. CSN1/3/8 interact and form a sub-module within the CSN holo-complex structure (PDB
accession 4D10). The observations are consistent between the two whole workflow replicates (see Appendix Fig S6A). Lower right panel, validation of distinct elution
behavior of holo-CSN exclusive (CSN7A) and shared subunit (CSN8) by immunoblotting. For full immunoblotting data (CSN1, CSN3, CSN4, CSN5, CSN7A, and CSN8),
see Appendix Fig S7C).

D CSN1/3/8 display distinct fractionation patterns in co-fractionation experiments performed in other laboratories, specifically in orthogonal ion exchange fractionation
of HEK293 lysates (Wan et al, 2015, upper panels) and size exclusion chromatographic fractionation of U2OS lysates (Kirkwood et al, 2013, lower panel), in line with
the CSN1/3/8 as distinct entity.

E Baculoviral co-expression of human CSN1, CSN3, and CSN8 in Sf21VM insect cells, with CSN8 N-terminally Strep(II)- and CSN1 & CSN3 N-terminally His6-tagged,
followed by affinity purification and SDS–PAGE displays banding pattern in line with the formation of a stable trimer CSN1/3/8.
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is inspired by the peptide-centric analysis concept employed for the

specific and sensitive detection of peptides from proteomic samples

in targeted proteomic approaches, such as SWATH/DIA (Gillet et al,

2012), and extends the use of prior information for the analysis of

proteins to the level of protein complexes. Similar to peptide-centric

analysis of SWATH/DIA data, high selectivity and sensitivity are

A

B C 

Figure 6.
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achieved by focusing the analysis on analytes conceivably expected

in the sample when querying the protein co-fractionation data for

candidate protein complexes that are inferred from reference protein

interaction maps. Thereby, prior information significantly constrains

complex inference from co-fractionation profiling data and thus

adds specificity and the possibility to develop a target-decoy model

to assess the reliability of the obtained results. Furthermore,

complex identifications are directly linked to quantitative chromato-

graphic signals, a central feature of targeted proteomics approaches.

As technical advances, we demonstrate the benefits of SWATH/DIA

for the analysis of the sequential SEC fractions, introduce a freely

accessible computational framework CCprofiler, and provide a tool

facilitating the exploitation of complex-centric data, SECexplorer

(Fig 7).

In combination, these technical and conceptual developments

provide the following advances to the field of correlation profiling.

First, the preferable quantitative performance of SWATH/DIA

provides more complete and consistent sampling of the eluting

proteome, resulting in fewer gaps and noise in the recorded profiles.

This results in deeper insights into modular proteome organization,

including the detectability of low abundance complex intermediates.

Second, the use of prior information reduces false-positive assign-

ments of complex co-membership due to coincidental co-elution of

proteins that do in reality not interact. Third, the CCprofiler pipeline

introduces the first statistical target-decoy model to tightly control

error rates in the inference of complexes from co-fractionation pro-

filing experiments and represents a comprehensive, open-source

platform to support complex-centric profiling of proteomes, irre-

spective of the fractionation method used. Fourth, the efficiency of

information retrieval and thus overall method throughput is drasti-

cally increased when compared to current co-fractionation-based

complex analyses, generating comprehensive and accurate assess-

ments of proteome arrangement from an order of magnitude less

LC-MS experiments than necessitated earlier. Together, these

advances transform the SWATH/DIA-based complex-centric

proteome profiling into a robust, generally applicable technique

supported by a freely accessible computational framework.

We applied complex-centric profiling to a native protein extract

from exponentially growing Hek293 cells. Collectively, the results

demonstrate the superior performance of the technique compared to

the state of the art and provide new biological insights, as follows.

The analysis establishes estimates for the overall assembly state of a

human proteome—55% of inferred protein mass and two-thirds

(66%) of the observed protein species appear engaged in higher

order assemblies; a lower-boundary estimate given inevitable losses

of associations in the experimental procedure. Besides detecting

cumulatively 462 cellular complexes upon targeted analysis, the

method in many instances resolves distinct variants of the expected

complexes, such as sub-complexes that elute independently from

the chromatographic column. While sub-complex signals may origi-

nate from artifactual disruption of cellular complexes, we demon-

strate in two cases that orthogonal pieces of evidence can build

confidence in the biological relevance of substructures assigned

from defined subunit co-elution. First, we identified a new complex

CSN1/3/8 as a sub-complex of the COP signalosome (CSN) holo-

complex that elicits crucial regulatory functions toward E3 ligase

complexes and the ubiquitin proteasome system (Dubiel et al,

2015). It is tempting to speculate that a putative function of the

CSN1/3/8 sub-complex could be the negative regulation of CSN

holo-complex activity, due to the fact that the sub-complex incorpo-

rates the subunit CSN1 which is involved in substrate recognition

(Cavadini et al, 2016), but does not contain the catalytically active

CSN5 subunit. CSN5 embodies the de-neddylation activity to the

CSN holo-complex (Cavadini et al, 2016). CSN1/3/8 may potentially

sequester neddylated E3 CRLs from CSN-mediated de-neddylation

and thus affect their lifetimes and overall activity profiles. In a

second example, complex-centric analysis in combination with

manual refinement identified early and late assembly intermediates

on the path toward the 20S proteasome particle based on defined

co-elution of the respective assembly chaperones. Strikingly, the

early and late intermediary complexes assigned (early: a1/a3/a4/
a5/a7, late: a1–7/b2/b3/b6/b7) collide with current models of the

temporal order of subunit assembly (Hirano et al, 2008; Im &

Chung, 2016; for a graphical summary, see Fig 6B, lower panel).

Current models entail early a-ring intermediates lacking subunits a3
and a4 (Hirano et al, 2005). In contrast, our model suggests assem-

bly of pre-a-ring intermediates composed of subunits a4, a7, a5, a1,
and a3 (forming a connected substructure of the a-ring in this

order; Huang et al, 2016) that lacks subunits a2 and a6. These

join thereafter to complete the a-ring, under involvement of the

chaperone POMP/hUmp1. Current models further suggest that

ordered b-ring assembly scaffolded by a-rings in the sequence of

b2, b3, b4, b5, b6, b1, and lastly b7 (Hirano et al, 2008; Im &

Chung, 2016) help overcome a POMP-dependent checkpoint for

dimerization into the mature 20S particle (Li et al, 2007). The

detection of late assembly intermediate a1–7/b2/b3/b6/b7 in our

data suggests an alternate sequence of assembly with early incor-

poration of subunit b7 and dimerization after the recruitment of

subunits b1, b4, and b5.
These insights into complex biogenesis could prove valuable, for

example, in the design of future therapeutic strategies aiming to

counteract elevated proteasome expression and activity that has

been associated with cancer pathobiology (Voutsadakis, 2017). This

is exemplified by current attempts to target proteasomal activity via

◀ Figure 6. Complex-centric detection of 20S proteasome assembly intermediates.

A Protein-level SEC chromatograms of the 22 canonical 26S proteasome subunits. Vertical black lines indicate the apexes of six distinct co-elution signals detected in
complex-centric scoring; two of which represent well-known co-occurring variants, the full 26S (i) and the 20S (ii) particle devoid the 19S lid and ATPase (Indicated by
structural models, PDB accession 5GJR) and four of which, composed of predominantly 20S a and b subunits, appear at reduced size (222–107 kDa, fractions 39, 40,
42, and 46). The observations are consistent between the two whole workflow replicates (see Appendix Fig S6B).

B Zoom into chromatograms of 20S components in full and reduced MW range and in the context of chaperones known to be involved in assembly according to the
current model of 20S biogenesis (lower panel, assembled after Saeki & Tanaka (2012) and PDB accession 5GJR), colored by protein class. Reduced MW species are
classified into early and late assembly intermediates (as opposed to artifacts of disassembly) by defined co-elution of early assembly chaperone PSMG3/PSMG4 dimer,
late assembly chaperone proteasome maturation protein POMP, and constitutive chaperone PSMG1/2 dimer.

C Subunit mass distribution across early and late assembly intermediate elution ranges suggests predominant components of the intermediary species accumulating in
HEK293 cells.
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the chaperone POMP (Goldberg et al, 2015; Fig 6C). We expect that

the data generated by complex-centric proteome profiling will lead

to the discovery of other instances of characteristic protein

complexes and sub-complexes and thus trigger research into their

functional roles.

Despite the advances and benefits of complex-centric proteome

profiling by SEC-SWATH-MS, the method has a number of limita-

tions. (i) The balance of stability of complexes and extractability in

native form. Inevitably, associations are lost in the experimental

procedure, most notably upon dilution imposed during lysis and
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Figure 7. SECexplorer tool for customized interrogation of SEC-SWATH elution profiles.

A SECexplorer web interface for querying custom protein sets for co-elution behavior in the SEC-SWATH-MS data, viewing chromatograms for interpretation and with
algorithmic assistance.

B Zoom into high MW peak shoulder of holo-COP9 signalosome (compare Fig 5), where defined co-elution signals of CSN substrate components CUL4A and DDB2
suggest the partial resolution of substrate-bound and free pools of CSN holo-complex.

C Estimation of the fraction of holo-CSN in the likely substrate-bound pool vs. the free pool, with eight measurements along the eight subunits and based on Gaussian
deconvolution of two signals underlying the observed peak and shoulder (also see Appendix Fig S7).
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subsequent size exclusion chromatography, reducing protein

concentration by ca. five orders of magnitude from the cellular envi-

ronment (ca. 300 mg/ml; Milo, 2013) to the conditions on the SEC

column (ca. 0.06 mg/ml). Consequently, complex detectability is

limited by thermodynamic stability and despite best efforts toward

minimizing complex disintegration (fast processing in the cold and

analyte adsorption-free chromatography), thermodynamically labile

interactions, particularly those with fast off-rates, are likely inacces-

sible by correlation profiling methods, including complex-centric

proteome profiling. While first studies have evaluated chemical

crosslinking as means to stabilize cellular modules for chromato-

graphic analyses (Larance et al, 2016), it remains an open challenge

to identify uniformly beneficial crosslinking reagents and reaction

conditions that yield optimal balance between stabilization of

biologically relevant structures and artifactual crosslinking across

the full range of protein expression in the cell (Leitner et al, 2016)

and thus do not introduce new experimental bias. (ii) In addition to

a bias toward thermodynamically stable complexes, the applied

SEC-SWATH-MS workflow enriches for cytosolic proteins, while

membrane-associated proteins are underrepresented compared to

the full human genome (see Appendix Fig S4C). (iii) Complex-

centric proteome profiling is limited to the scope of the prior knowl-

edge on protein association employed. However, continued efforts

to map cellular protein association space (Huttlin et al, 2017) and

computational integration of multiple lines of experimental evidence

(Drew et al, 2017) will continually improve the quality and

completeness of the prior knowledge useable as input to targeted,

complex-centric analyses. Extended reference protein interaction

maps will support near-complete mapping of the complexes detect-

able in co-fractionation experimental data in the near future,

supported by scalability of the target-decoy statistical model. That

being said, the statistical model itself is limited to the assignment of

an FDR on the evidence of detection of defined complexes in the

complex query set. Future improvements could potentially support

a robust statistical model covering also post-processing steps, such

as collapsing of detected features across multiple complex query sets

to unique co-elution signals.

SEC-SWATH-MS accelerates the mapping of cellular complexes.

Whereas the method yields a similar coverage of complexes

compared to state of the art at over fourteen times less LC-MS injec-

tions, it still required 81 fractions to be analyzed at 2-h gradient time

per fraction, culminating in 162 h of net MS acquisition time. This

fact limits the scope for cohort studies. However, this issue may

well be alleviated soon, given anticipated improvements SWATH/

DIA sample throughput with minimal loss of protein coverage that

seem achievable because in SWATH/DIA acquisition the number of

analytes quantified does much less strongly depended on gradient

length than is the case for DDA acquisition. As a consequence of the

high quantitative accuracy of the SEC-SWATH-MS data and

targeted, error-controlled complex centric analysis, this study lays

the foundation to confidently assess proteome organization and to

conclusively follow its dynamics as a function of cell state. Ulti-

mately, extensions of our workflow will support the detection of

subtle re-arrangements within proteomes that occur in response to

perturbation or along central biological processes. Such insights

will help foster our understanding of the importance of higher

order organization of the parts to convey plasticity and regulation

to cellular systems.

Materials and Methods

Preparation of native HEK293 proteome and fractions for
MS analysis

HEK293 cells were obtained from ATCC and cultured in DMEM

containing 10% FCS and 50 lg/ml penicillin/streptomycin to 80%

confluency. Ca. 7e7 cells were mildly lysed by freeze–thawing into

0.5% NP-40 detergent- and protease and phosphatase inhibitor

containing buffer, essentially as described (Collins et al, 2013),

albeit without the addition of avidin. Lysates were cleared by

15 min of ultracentrifugation (100,000 × g, 4°C), and buffer was

exchanged to SEC buffer (50 mM HEPES pH 7.5, 150 mM NaCl)

over 30-kDa molecular weight cutoff membrane at a ratio of 1:50

and concentrated to 25–30 mg/ml (as judged by OD280). After

5 min of centrifugation at 16.9 × g, 4°C, the supernatant was

directly subjected to fractionation on a Yarra-SEC-4000 column

(300 × 7.8 mm, pore size 500 Å, particle size 3 lm, Phenomenex,

CA, USA). Per SEC run, 1 mg native proteome (by OD280) was

injected and fractionated at 500 ll/min flow rate at 4°C, collecting

fractions at 0.19 min per fraction from 10 to 28 min post-injection,

fractions 3–83 of which were considered relevant proteome elution

range and considered for further analysis with fractionation index

1–81. The fractions collected from two consecutive SEC fractiona-

tions of the same extract (2 × 1 mg) were pooled for subsequent

bottom-up proteomic analysis. Apparent molecular weight per frac-

tion was log-linearly calibrated based on column performance check

protein mix analyzed prior and after each experimental replicate

(AL0-3042, Phenomenex, CA, USA). An aliquot of the unfraction-

ated mild proteome extract was included in peptide sample prepara-

tion and LC-MS analysis. Proteins were proteolyzed to peptide level

by trypsin digestion (Promega V5111) in the presence of 1% sodium

deoxycholate (Sigma-Aldrich D6750), reduced, alkylated, and de-

salted on C18 reversed phase (96-Well MACROSpin Plate, The Nest

Group, MA, USA), and each sample was supplemented with equal

amounts of internal retention time calibration peptides (iRT kit,

Biognosys, CH).

Baculoviral co-expression and co-purification

Sf21VM Cells were maintained in ExCell420 Medium in Erlenmeyer

culture flasks shaking at 27.5°C. Human COP9 signalosome subunits

bearing N-terminal Strep(II) or His6 tags were co-expressed by co-

infection of Sf21VM cells with three baculoviral vectors obtained

from Lingaraju et al (2014). After 48 h, cells were mildly lysed and

COP9 signalosome subunits and complexes differentially affinity-

purified on StrepTactin and Ni-NTA-coated magnetic beads (Qiagen)

followed by bead boiling in SDS loading buffer and subunit detec-

tion via SDS–PAGE and InstantBlue staining (Expedeon). Subunits

were identified by size and in reference to individual expression and

in-gel detection.

MS analysis

LC-MS analysis of peptide samples was performed in both DDA and

SWATH/DIA acquisition mode on an AB Sciex TripleTOF 5,600+

instrument (AB Sciex, MA, USA), side-by-side per sample, sliding

from early to late-eluting fractions. Online reversed phase
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chromatography fractionated peptide samples delivering at 300 nl/

min flow a 120-min gradient from 2 to 35% buffer B (0.1% formic

acid, 90% acetonitrile) in buffer A (0.1% formic acid, 2% acetoni-

trile) on a self-packed picoFrit emitter packed with 20 cm column

bed of 3 lm 200-Å Magic C18 AQ stationary phase, essentially as

described (Gillet et al, 2012; Collins et al, 2013). In data-dependent

acquisition (DDA), MS1 survey spectra were acquired for the range

of 360–1,460 m/z with a 500 ms fill time cap. The top 20 most-

intense precursors of charge state 2–5 were selected for CID frag-

mentation and MS2 spectra were collected for the range of 50–

2,000 m/z, with 100 ms fill time cap and dynamic exclusion of

precursor ions from reselection for 15 s, essentially as described

(Collins et al, 2013).

Data-independent acquisition (SWATH/DIA) mass spectrometry

was performed using an updated scheme of 64 variably sized

precursor co-isolation windows optimized for human cell lysate MS

signal density (SWATH� 2.0, essentially as described; Collins et al,

2017). SWATH cycles (64 × 50 ms accumulation time) were inter-

spersed by MS1 survey scans for the range of 360–1,460 m/z with a

250 ms fill time cap, resulting in an overall period cycle time of

3,498 ms. The MS2 mass range was set to 200–2,000 m/z.

Data processing

Spectrum-centric analysis of DDA-MS data

For MS1 and spectral count-based quantification as basis for

complex-centric analysis, the DDA-MS data were processed using

the MaxQuant software package (version 1.5.3.17) with the

human canonical SwissProt reference database (build Aug-2014),

standard parameters and variable methionine oxidation and N-

terminal acetylation enabled. Match between runs was enabled to

facilitate ID transfer and more consistent MS1 quantification

(from and to) between adjacent fractions. Raw peptide MS1

intensities of individual peptide precursor signals were further

considered. For the generation of the peptide query parameter

library employed for targeted analysis of the SWATH/DIA data,

DDA-MS data were processed as described (Rosenberger et al,

2014).

Peptide-centric analysis of SWATH/DIA data

SWATH/DIA data were analyzed via targeted, peptide-centric analy-

sis, querying 204,545 precursors based on the combined human

assay library (CAL; Rosenberger et al, 2014) in the SWATH frag-

ment ion chromatograms, using a modified OpenSWATH (Röst

et al, 2014), PyProphet (Reiter et al, 2011; Teleman et al, 2015),

and TRIC (Röst et al, 2016) workflow and the iPortal framework

(Kunszt et al, 2015). Specifically, a global PyProphet scoring func-

tion was trained on a master sample of the unfractionated HEK293

lysate with tryptic digest and SWATH/DIA data acquisition equiva-

lent to the fractionated samples. PyProphet subscores employed

were MPR_VARS = library_corr yseries_score xcorr_coelution_weig

hted massdev_score norm_rt_score library_rmsd bseries_score int

ensity_score xcorr_coelution log_sn_score isotope_overlap_score

massdev_score_weighted xcorr_shape_weighted isotope_correlatio

n_score xcorr_shape. The subscore weights learned on the master

sample were fixed and applied to score the fragment ion chro-

matogram peak groups across the SWATH data acquired from all

81 SEC fractions and one master sample. OpenSWATH

pipeline parameters employed were WINDOW_UNIT = Thomson,

EXTRACTION_WINDOW = 0.05, RT_EXTRACTION_WINDOW = 600,

MPR_MAINVAR = xx_swath_prelim_score, MPR_NUM_XVAL = 10.

Internal iRT calibration was performed as previously described (Röst

et al, 2014) with MIN_COVERAGE = 0.6, MIN_RSQ = 0.95. Within

the workflow, the resulting quantitative matrix was further processed

using TRIC (Röst et al, 2016) retention time alignment to improve

identification consistency and sensitivity with the following parame-

ters: ALIGNER_TARGETFDR = 0.05, ALIGNER_METHOD = global_

best_overall, ALIGNER_REALIGN_METHOD = splineR_external, AL

IGNER_MAX_RT_DIFF = auto_3medianstdev, ALIGNER_DSCORE_C

UTOFF = 1, ALIGNER_FRACSELECTED = 0. To achieve an estimated

global precursor or peptide query level FDR of 5%, only peak groups

achieving an m-score of 0.00393943 in any of the runs were consid-

ered as seeds for alignment. Signals up to an m-score threshold

of 0.05 were aligned, resulting in 97941 precursors quantified

in at least one sample. From the resulting data matrix

(E1605191849_feature_alignment.tsv), the master sample was

removed and the “raw” precursor-level quantitative data along

the 81 SEC fractions were further processed within the CCpro-

filer framework.

Data preprocessing in CCprofiler

The raw precursor-level quantitative data from the peptide-centric

analysis pipeline above were next imported into CCprofiler, includ-

ing preprocessing for subsequent analysis steps, including (i)

removing non-proteotypic evidence, (ii) summing precursor signals

per peptide to generate peptide-level quantitative profiles (i.e.,

“peptide traces”), (iii) filtering the data based on chromatography-

informed scores to perform protein-level error estimation and

control, and (iv) to infer protein-level quantitative profiles (i.e.,

“protein traces”).

Import to peptide traces The precursor-level data were imported

into the CCprofiler framework by applying the importFromOpenS

WATH function with following parameters: annotation_table = exa

mpleFractionAnnotation, rm_requantified = TRUE, MS1Quant = F

ALSE, rm_decoy = FALSE. During import, non-proteotypic evidence

is removed and multiple precursor signals are summed to peptide

level, generating a peptide-level quantitative profiles (or: peptide

traces) stored in a unified data container of class “traces”. Subse-

quently, the peptide traces were annotated with protein molecular

weight and further information from the UniProt database (hu-

man9606, download on 30.11.2016) applying the annotateTraces

function with following parameters: trace_annotation = examp

leTraceAnnotation, traces_id_column = “protein_id”, trace_annota

tion_id_column = “Entry”, trace_annotation_mass_column = “Mas

s”, uniprot_mass_format = TRUE, replace_whitespace = TRUE. The

peptide traces generated here are not yet strictly FDR-filtered and

thus represent a “raw” set of signals subject to further processing,

see below.

External calibration of SEC apparent molecular weight To support

downstream estimation of complex assembly states, the apparent

molecular weight at each SEC fraction was calibrated based on the

elution apex fraction numbers of a external standard set of reference

proteins fractionated on the same SEC setup, side-by-side with the

HEK293 lysate fractionations. The apparent molecular weight is
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calibrated using a log-linear relationship by applying the function

calibrateMW using the CCprofiler exampleCalibrationTable contain-

ing apex fraction number and known molecular weight of the refer-

ence protein set (see Appendix Fig S3), followed by adding the

apparent molecular weight information into the peptide traces

object using the annotateMolecularWeight function.

SEC-informed data filtering, FDR control, and protein quan-
tification to protein traces The peptide traces to this point have

been generated under relatively relaxed FDR and related score

cutoff criteria to ensure maximal sensitivity of analyte retrieval. To

ensure highest possible data quality, protein-level error control is

postponed to this later stage in order to leverage additional infor-

mation available through SEC fractionation for optimized protein

analyte validation. We filter the peptide-level data based on SEC-

informed filters regarding (i) the length of coherent identification

stretches along consecutive SEC fractions and (ii) peptides’ quanti-

tative fractionation pattern similarity to those of its sibling peptides

(originating from the same parent protein). We monitor the impact

of filtering on the decoy-estimated FDR on protein level by the

TDA (Choi & Nesvizhskii, 2008) while accounting for the fraction

of false targets on the protein level, also referred to as percentage

of incorrect targets (PIT; Käll et al, 2008) or [pi0] (Storey, 2002).

We estimated the protein-level FFT in a two-step-procedure. First,

the protein-level FFT can conservatively be approximated by the

precursor-level FFT (or: pi0) estimated via the q-value approach in

PyProphet-based analysis of the unfractionated HEK293 lysate

master sample analyzed in triplicate. Using the assess_fdr_overall

function of R/SWATH2stats (Blattmann et al, 2016) and the aver-

age precursor-level FFT/pi0 estimated by PyProphet/qvalue, the

maximal number of true targets can be estimated. Subsequently,

the resulting fraction of false target proteins given all target

proteins contained in the query library employed can be inferred,

with 52.57861% of the targeted proteins from the CAL likely not

being represented in the global, unfractionated HEK293 lysate

sample set. The thus derived protein-level FFT of 0.5257861 is then

used to correct the decoy-counting-based FDR estimates. The anno-

tated “raw” peptide traces were then filtered based on consecutive

identification and sibling peptide correlation that leverages the

extra information gained by sample fractionation. The filterConsec-

utiveIdStretches function was run with a min_stretch_length of 3.

The filterBySibPepCorr function was run with following parameters:

fdr_cutoff = 0.01, fdr_type = “protein”, FFT = 0.5257861. As a

result, peptides with average sibling peptide correlation coefficient

(spc) below 0.316 were discarded in order to achieve an estimated

FDR of < 1% among the remaining 4,958 proteins. The proteins

are then quantified based on summing the top2 peptides with high-

est cumulative signal intensity across the 81 fractions, generating

the final protein-level quantitative data matrix by applying the

proteinQuantification function with the options: topN = 2, keep_

less = FALSE, rm_decoys = TRUE. The resulting final protein

traces entail 4,916 proteins quantifiable with at least two proteo-

typic peptides and form the basis for complex-centric exploration,

searching the data for hypothetical complexes inferred from public

protein interaction databases.

In addition to complex-centric exploration of the protein-level

traces, the filtered peptide traces (N = 58,792) are directly employed

to detect of protein elution events from the SEC column (also termed

“protein features”) based on sibling peptide co-peaking in the SEC

dimension, performed in the protein-centric analysis module within

CCprofiler.

Protein-centric detection of protein elution in SEC via CCprofiler

To evaluate complex assembly behavior of each protein individu-

ally, we employ the targeted analysis concept and CCprofiler algo-

rithm to detect distinct protein elution events from the SEC column

(also termed “protein features”). Protein elution is detected based

on based on sibling peptide co-peaking “features” in the SEC dimen-

sion, based on the protein–FDR-filtered peptide traces (N = 58,792)

grouped by parent protein and detecting elution signals via the

CCprofiler algorithm. Algorithm parameters were aligned to the

parameters optimized for complex-centric analysis reasoning that

correlation signal and peak width properties are generic attributes of

the co-fractionation data, regardless of the analyte level. Protein

features were detected applying findProteinFeatures with following

parameters: corr_cutoff = 0.95, window_size = 8, parallelized = TR

UE, n_cores = 30, collapse_method = “apex_only”, perturb_cutof

f = “5%”, rt_height = 3, smoothing_length = 9, useRandomDecoy

Model = TRUE. These parameters correspond to the optimal param-

eters selected for the dataset with a grid search of the parameter

space that was evaluated by performance metrics based on the

complex-level analysis and target-decoy strategy (see below). All

protein elution features were scored by calculateCoelutionScore and

q-values were estimated applying calculateQvalue (lambda = 0.5).

The results were filtered for a maximal q-value of 0.1, corresponding

to an FDR of 10%.

Complex-centric detection of complex elution via CCprofiler

The core module of complex-centric proteome profiling is complex-

centric query of hypothetical complexes inferred from public data-

bases in the protein-level quantitative fractionation profiles (protein

traces). The necessary steps are (i) formulation of protein complex

queries from public databases, (ii) formulation of decoy complex

queries to model and control error rates, (iii) optimization of

processing parameters in a grid search using a subset of complex

queries, (iv) detection and statistical scoring of complex subunit co-

elution evidence (“complex features”) across all queries, and (v)

collapsing of overlapping and redundant co-elution evidence to

delineate complexes and complex families with defined co-elution

of subunits in SEC.

Complex query formulation/generation from public databases A

crucial step in complex-centric proteome profiling is the definition

of target queries. Here, protein complex queries were generated

based on CORUM (Ruepp et al, 2010), BioPlex (Huttlin et al, 2015),

and StringDB (Franceschini et al, 2013).

Complexes annotated in CORUM were processed by merging

redundant entries, removing homo-oligomers and resolving alter-

native subunit participation into complex variants (labeled -1,-2,

etc.).

For generating queries based on the BioPlex interaction network,

BioPlex_interactionList_v2.tsv was downloaded from http://biople

x.hms.harvard.edu (Oct. 2016; Huttlin et al, 2015) and protein

isoforms (UniProt accession -1, -2, etc.) were collapsed to the canon-

ical Uniprot accessions by deleting the isoform specifiers and remov-

ing redundant edges. Pathlengths between any protein pair within
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the network were calculated by calculatePathLength and queries

were generated by applying generateComplexTargets with following

parameters: max_distance = 1, redundancy_cutoff = 0. Unknown

UniProt ids were removed.

StringDB complex queries were generated based on StringDB

v10 (9606.protein.links.v10.txt). Protein identifiers were mapped

to Uniprot accessions via BioMart. The interactions were filtered

for a minimal combined_score of 900. Pathlengths between any

protein pair within the network were calculated by calcu-

latePathLength and complex queries were generated by applying

generateComplexTargets with following parameters: max_dis-

tance = 1, redundancy_cutoff = 0. NAs were removed prior to the

complex query generation.

Decoy complex query generation In order to enable an automated

error estimation of the complex-centric feature finding a decoy

complex query is generated for each target. For all three protein

complex query sets, decoys were generated separately, by first creat-

ing a binary network based on the respective complex queries

(generateBinaryNetwork), followed by pathlength calculation (calcu-

latePathLength). The decoys were generated by generateCom-

plexDecoys with n_tries = 3, append=TRUE, and dist = 2 for

CORUM and BioPlex and dist = 1 for StringDB.

Parameter optimization for complex feature finding (grid search)
Optimal parameters for complex feature finding in the HEK293

SEC-SWATH-MS dataset were determined by a complex-centric

feature finding grid search based on the CORUM complex queries,

as implemented in performComplexGridSearch. Following parame-

ters were tested: corrs = c(0.7, 0.8, 0.9, 0.95), windows = c(8, 10,

12), smoothing = c(5, 7, 9), rt_heights = c(3, 5). Only the best,

most complete complex feature for each tested complex query was

considered (getBestFeatures). Scores were calculated for each

parameter set by calculateCoelutionScore and calculateQvalue

(lambda = 0.5). The best parameter set is selected by only consid-

ering parameter combinations that achieve a decoy-based FDR

below a selected threshold, followed by taking the set that resulted

at the highest number of detected features. These statistics for

each parameter set were determined by qvaluePositivesPlotGrid

and the optimal parameter set was selected by getBestQ-

valueParameters (FDR_cutoff = 0.05). The optimal parameters

relating to chromatography and noise in the dataset are employed

also for the task of protein-centric detection of protein elution

from peptide-level traces (see above). We expect transferability

because chromatographic parameters such as resolution in SEC are

specific to the dataset and differences in noise levels should be

neglectable when moving from protein profiles based on two

peptides back to individual peptide signals. In complex-centric

analysis, the optimal parameter identified based on a subset of

complex queries is then employed to detect protein co-elution

signals for the full set of complex queries in the global complex

feature detection step.

Global complex feature detection The optimal parameter set deter-

mined in the complex feature finding grid search explained above

was used to detect complex features for all three complex query sets

based on CORUM, BioPlex, and StringDB. The findComplexFeatures

function was applied with following parameters: corr_cutoff = 0.95,

window_size = 8, parallelized = TRUE, n_cores = 30, collapse_met

hod = “apex_network”, perturb_cutoff = “5%”, rt_height = 3, smo

othing_length = 9. The resulting protein complex features were initi-

ally filtered to contain only elution features eluting at a higher molec-

ular weight than 2-times the molecular weight of the largest

monomer across all complex subunits, filterFeatures: complex_id

s = NULL, protein_ids = NULL, min_feature_completeness = NULL,

min_hypothesis_completeness = NULL, min_subunits = NULL, mi

n_peak_corr = NULL, min_monomer_distance_factor = 2.

For scoring and statistical evaluation, only the best, most

complete complex elution feature was selected per complex

query (getBestFeatures). Scores and q-values were determined by

calculateCoelutionScore and calculateQvalue (lambda = 0.5). The

results were subsequently filtered for a maximal q-value of 0.05,

corresponding to an FDR of 5%. The analyses yield co-elution

evidence for 572, 951, and 1,810 complex queries from CORUM,

Bioplex, and StringDB, respectively, which then needs to be

integrated to remove redundancies in order to identify unique,

chromatographically resolved co-elution groups representing

distinct complexes or complex families. Alternatively, individual

complex signal sets can be interrogated for the retrieval of

chromatographically resolved complex variants, e.g., assembly

intermediates.

Detection of complex variants To investigate complex variants,

such as assembly intermediates, the initial set of all detected co-

elution features was filtered for complex queries whose best

detected co-elution feature managed the 5% FDR cutoff. All

secondary features were subsequently filtered manually for a

minimum peak correlation of 0.5. Applying these criteria, the

analysis recovers two or more distinct co-elution signals for

nearly half the CORUM complexes covered (N/M). While many

of the recovered signals represent actual distinct complex vari-

ants, we suggest special care and in-depth investigation when

interpreting individual cases of multi-complex-feature queries,

similar to the evaluation of COP9 signalosome and 20S protea-

some subversions presented in the main text of the paper. We

particularly encourage the use of SECexplorer to cross-reference

putative complex variant signals with further proteins known to

engage in physical interactions with the protein set in question to

help strengthen or disqualify the complex query extractable from

the dataset at hand.

Collapsing of co-elution features to unique signals Separate

complex-centric analysis of the CORUM, BioPlex, and

StringDB-derived sets of complex queries retrieves co-elution

evidence for 572, 951, and 1,810 queries, respectively. In

order to identify unique, chromatographically resolved

co-elution groups representing distinct complexes or complex

families, the signal sets need to be integrated and collapsed

to unique signals.

To perform feature collapsing, only the best, most complete co-

elution signal per complex query was used for CORUM, BioPlex, and

String results, each independently filtered for 5% estimated FDR.

Complex features were mapped by getUniqueFeatureGroups with

following parameters: rt_height = 3, distance_cutoff = 1.25. The

collapsing was then performed by applying callapseByUniqueFea-

tureGroups, rm_decoys = TRUE.
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Benchmarking

CCprofiler performance against manual annotation We bench-

marked the performance of the automated CCprofiler analysis

against manual analysis of a curated reference set of chromato-

graphically co-eluting proteins that are annotated in the CORUM

knowledgebase as subunits of well-defined complexes (Ruepp et al,

2010). During manual annotation, all complexes in CORUM for

which at least 50% of their subunits were MS-observable in our

HEK293 SEC-SWATH-MS data, were manually annotated for

complete or partial co-elution peak groups. Because co-elution

signal quality is very heterogeneous, we further classified the manu-

ally curated, true-positive co-elution signals into high-quality

signals, characterized by large signal-to-noise and near-Gaussian

peak shape (Phigh), and lower-confidence positives, characterized by

lower signal-to-noise and/or poor peak shape (Plow). All complex

queries for which no co-elution peak were visible in manual inspec-

tion were marked as negatives. Indeed, high-quality signals were

more effectively recovered in algorithmic processing (compare

Fig 2A, true-positive rate plot).

The manual annotation was taken as reference set to test the

performance of the CCprofiler algorithm. Both the true-positive rate

(TPR) and FDR were taken as measures of the performance of

CCprofiler compared to the manual analysis.

TPRall ¼ TPall

ðPhigh þ PlowÞ

TPRhigh ¼ TPhigh

Phigh

Here, TPall is the number of complex queries with an automati-

cally detected feature that also got manually annotated as high- or

low-confidence positive (Phigh or Plow). TPhigh is the number of

complex queries with an automatically detected feature that also got

manually annotated as high-confidence positive (Phigh).

The manual annotation-based FDR was estimated as follows:

FDRmanual ¼ ðTall � TPallÞ
Tall

Here, Tall is the total number of complex queries with a detected

feature from CCprofiler (true positives plus false positives).

Complex-centric profiling performance comparison to complexes
reported by Havugimana et al (2012) and Larance et al (2016) To
demonstrate the broad coverage of protein complex signals achiev-

able with our new complex-centric profiling approach, we compared

the complex identification performance with that of (i) a reference

chromatographic complex analysis workflow implemented by

Havugimana et al (2012) that depends on multidimensional frac-

tionation of native complexes and (ii) a reference set of complexes

reported by Larance et al (2016) that we have further analyzed by

complex-centric analysis using StringDB as prior connectivity infor-

mation (Fig 2B).

For this comparison, we calculated an overlap score for each

complex in the CORUM set of reference complexes for each of the

compared datasets.

overlap ¼ maxðn subunitssharedÞ
n subunitsCORUM

Here, n_subunitsCORUM is the number of subunits annotated in a

given CORUM reference complex and max(n_subunitsshared) is the

maximum number of subunits annotated in the CORUM reference

complex that are reported as co-complex members by our complex-

centric profiling strategy or the other datasets respectively.

For our complex-centric profiling strategy, we took the complex

features derived from complex-centric analysis with CCprofiler of

StringDB-derived complex queries. For Havugimana et al, all of

their 622 reported complexes were taken. For Larance et al, both

their reported 475 complexes and the complexes derived from

complex-centric analysis with CCprofiler usingStringDB prior

connectivity information were considered.

The number of retrieved CORUM complexes was determined by

counting the number of CORUM reference complexes with a mini-

mal overlap of 0.5.

SEC-DDA-MS data analysis in CCprofiler

DDA-MS data were processed using the MaxQuant software package

(Cox & Mann, 2008; version 1.5.3.17) with the human canonical

SwissProt reference database (build Aug-2014), standard parameters

and variable methionine oxidation and N-terminal acetylation

enabled. Match between runs was enabled to facilitate ID transfer

and more consistent MS1 quantification (from and to) between adja-

cent fractions. For “MS1” quantification, raw peptide MS1 intensi-

ties of individual peptide precursor signals were further considered

and the top2 most-intense peptide’s signals summed to protein

level, equivalently to the rules employed for SWATH data analysis.

For “SpectralCount” quantification, all spectra counted for a given

peptide per fraction were used.

For both DDA analysis result sets, a complex feature finding grid

search was performed to ensure optimal data processing (identical

strategy and parameters as for the SEC-SWATH-MS complex feature

finding grid search, see above). The optimal parameter set for

both the spectral counting and MS1 quantification dataset were then

used to perform complex feature finding, again with identical strat-

egy and parameters as for the SEC-SWATH-MS complex feature

finding (see above). The optimal parameters used for findCom-

plexFeatures in the spectral counting dataset were corr_cutoff = 0.7,

window_size = 8, parallelized = TRUE, n_cores = 30, collapse_

method = “apex_network”, perturb_cutoff = “5%”, rt_height = 5,

smoothing_length = 9. The optimal parameters used for findCom-

plexFeatures in the MS1 quantification dataset were corr_cut-

off = 0.7, window_size = 12, parallelized = TRUE, n_cores = 30,

collapse_method = “apex_network”, perturb_cutoff = “5%”, rt_height

= 3, smoothing_length = 9.

Complex-centric analysis of native SEC-DDA-MS data from Larance

et al (2016) in CCprofiler

The native SEC-DDA-MS data from Larance et al (2016) were down-

loaded from the original publication Supplementary Table 2 (http://

www.mcponline.org/lookup/suppl/doi:10.1074/mcp.O115.055467

/-/DC1/mcp.O115.055467-3.xlsx). In the case of protein groups,

groups were reduced to a single UniProt entry by keeping the first

protein only. Decoys were further removed from the dataset. The

raw protein intensities were summed across all three replicates to
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generate a single combined protein quantification matrix across all

40 measured SEC fractions.

Optimal parameters for complex feature finding in the native

SEC-DDA-MS dataset were determined by a complex-centric feature

finding grid search based on the CORUM complex queries, as imple-

mented in performComplexGridSearch. Following parameters were

tested: corrs = c(0.7, 0.8, 0.9, 0.95), windows = c(8, 10, 12),

smoothing = c(5, 7, 9, 11), rt_heights = c(1, 3, 5). The optimal

parameter set determined for an FDR_cutoff of 0.05 were corr_cut-

off = 0.95, window_size = 12, rt_height = 5, smoothing_length = 7.

Complex-centric analysis was performed with these parameters by

using both CorumDB and StringDB as prior connectivity informa-

tion. The results were similarly processed as for the SEC-SWATH-

MS dataset, achieving a 5% FDR for each complex query set respec-

tively.

Workflow replicate analysis

The whole workflow replicate R2, with measured SWATH-MS quan-

titative profiles between fraction 23 and 46, was processed in an

identical manner compared to workflow replicate R1. In contrast to

replicate R1, replicate R2 was not filtered for sibling peptide correla-

tion. Protein quantification was performed using the same two

peptides as selected for replicate 1, in order to be quantitatively

comparable.

Immunoblot analysis

To validate the mass spectrometric observation of two distinctly

eluting variants of the COP9 signalosome complex, we assayed CSN

subunits in the relevant fractionation range by immunoblotting from

two independent experimental replicates. 1 mg of HEK293 lysate

was fractionated as described above, and 20 ll per fraction (21%)

was submitted to SDS–PAGE (NuPage 4 to 12% Bis–Tris gel; Invitro-

gen), transferred onto a nitrocellulose membrane, and probed with

antibodies against CSN1 (EP15642-22, Abcam, 1:1,000), CSN3

(EPR3127, Abcam, 1:10,000), CSN8 (EPR5139, Abcam, 1:1,000),

CSN4 (EPR7453, Abcam, 1:1,000), CSN5 (EPR1350, Abcam,

1:1,000), and CSN7A (EPR6463, Abcam, 1:500) according to

supplier’s instructions. Bound antibodies were detected with HRP-

conjugated goat anti-rabbit IgG antibody (1:2,000, Cell Signaling)

and visualized with the Amersham, ECL Prime Western Blotting

Detection Reagent (GE Healthcare) according to the manufacturer’s

protocol.

Data and software availability

The datasets and computer code produced in this study are available

in the following databases:

(i) Mass spectrometry proteomics data: ProteomeXchange Consor-

tium PXD007038 (http://proteomecentral.proteomexchange.org)

(ii) CCprofiler package: GitHub (https://github.com/CCprofiler/CC

profiler/)

A detailed vignette describing the main functionalities and usage

of the software is provided in the Appendix and available from

within the CCprofiler R package.

Expanded View for this article is available online.
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