979 research outputs found
Determining design parameters for Ad-hoc wirless sensor networks.
This paper considers the design of wireless sensor networks in which a set of smart battery-powered sensor nodes cooperatively form an ad hoc communications network for monitoring and control applications. The paper examines ways of extending the life of such networks by introducing a 'sleep mode' in the sensor node. Quantitative analysis is used to show that although there is a complex relationship between 'sleeping' and energy conservation, it is possible to make significant energy savings while incurring only modest degradation in performance. An optimum energy saving curve is derived which provides a basis for the design of extended-life ad hoc wireless sensor networks
Bit error rate estimation methods for QPSK CO-OFDM transmission
Coherent optical orthogonal frequency division multiplexing (CO-OFDM) is an attractive transmission technique to virtually eliminate intersymbol interference caused by chromatic dispersion and polarization-mode dispersion. Design, development, and operation of CO-OFDM systems require simple, efficient, and reliable methods of their performance evaluation. In this paper, we demonstrate an accurate bit error rate estimation method for QPSK CO-OFDM transmission based on the probability density function of the received QPSK symbols. By comparing with other known approaches, including data-aided and nondata-aided error vector magnitude, we show that the proposed method offers the most accurate estimate of the system performance for both single channel and wavelength division multiplexing QPSK CO-OFDM transmission systems
Spatiotemporal dispersion and wave envelopes with relativistic and pseudorelativistic characteristics
A generic nonparaxial model for pulse envelopes is presented. Classic SchroĂšdinger-type descriptions of
wave propagation have their origins in slowly-varying envelopes combined with a Galilean boost to the
local time frame. By abandoning these two simplifications, a picture of pulse evolution emerges in which
frame-of-reference considerations and space-time transformations take center stage. A wide range of
effects, analogous to those in special relativity, then follows for both linear and nonlinear systems. Explicit
demonstration is presented through exact bright and dark soliton pulse solutions
Full Quantum Analysis of Two-Photon Absorption Using Two-Photon Wavefunction: Comparison with One-Photon Absorption
For dissipation-free photon-photon interaction at the single photon level, we
analyze one-photon transition and two-photon transition induced by photon pairs
in three-level atoms using two-photon wavefunctions. We show that the
two-photon absorption can be substantially enhanced by adjusting the time
correlation of photon pairs. We study two typical cases: Gaussian wavefunction
and rectangular wavefunction. In the latter, we find that under special
conditions one-photon transition is completely suppressed while the high
probability of two-photon transition is maintained.Comment: 6 pages, 4 figure
Polarization-squeezed light formation in a medium with electronic Kerr nonlinearity
We analyze the formation of polarization-squeezed light in a medium with
electronic Kerr nonlinearity. Quantum Stokes parameters are considered and the
spectra of their quantum fluctuations are investigated. It is established that
the frequency at which the suppression of quantum fluctuations is the greatest
can be controlled by adjusting the linear phase difference between pulses. We
shown that by varying the intensity or the nonlinear phase shift per photon for
one pulse, one can effectively control the suppression of quantum fluctuations
of the quantum Stokes parameters.Comment: final version, RevTeX, 10 pages, 5 eps figure
Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting
Although universal continuous-variable quantum computation cannot be achieved
via linear optics (including squeezing), homodyne detection and feed-forward,
inclusion of ideal photon counting measurements overcomes this obstacle. These
measurements are sometimes described by arrays of beam splitters to distribute
the photons across several modes. We show that such a scheme cannot be used to
implement ideal photon counting and that such measurements necessarily involve
nonlinear evolution. However, this requirement of nonlinearity can be moved
"off-line," thereby permitting universal continuous-variable quantum
computation with linear optics.Comment: 6 pages, no figures, replaced with published versio
Random walks and random numbers from supercontinuum generation
We report a numerical study showing how the random intensity and phase fluctuations across the bandwidth of a broadband optical supercontinuum can be interpreted in terms of the random processes of random walks and LĂ©vy flights. We also describe how the intensity fluctuations can be applied to physical random number generation. We conclude that the optical supercontinuum provides a highly versatile means of studying and generating a wide class of random processes at optical wavelengths
Wave envelopes with second-order spatiotemporal dispersion : I. Bright Kerr solitons and cnoidal waves
We propose a simple scalar model for describing pulse phenomena beyond the conventional slowly-varying envelope approximation. The generic governing equation has a cubic nonlinearity and we focus here mainly on contexts involving anomalous group-velocity dispersion. Pulse propagation turns out to be a problem firmly rooted in frames-of-reference considerations. The transformation properties of the new model and its space-time structure are explored in detail. Two distinct representations of exact analytical solitons and their associated conservation laws (in both integral and algebraic forms) are presented, and a range of new predictions is made. We also report cnoidal waves of the governing nonlinear equation. Crucially, conventional pulse theory is shown to emerge as a limit of the more general formulation. Extensive simulations examine the role of the new solitons as robust attractors
Continuous-Variable Quantum Teleportation with a Conventional Laser
We give a description of balanced homodyne detection (BHD) using a
conventional laser as a local oscillator (LO), where the laser field outside
the cavity is a mixed state whose phase is completely unknown. Our description
is based on the standard interpretation of the quantum theory for measurement,
and accords with the experimental result in the squeezed state generation
scheme. We apply our description of BHD to continuous-variable quantum
teleportation (CVQT) with a conventional laser to analyze the CVQT experiment
[A. Furusawa et al., Science 282, 706 (1998)], whose validity has been
questioned on the ground of intrinsic phase indeterminacy of the laser field
[T. Rudolph and B.C. Sanders, Phys. Rev. Lett. 87, 077903 (2001)]. We show that
CVQT with a laser is valid only if the unknown phase of the laser field is
shared among sender's LOs, the EPR state, and receiver's LO. The CVQT
experiment is considered valid with the aid of an optical path other than the
EPR channel and a classical channel, directly linking between a sender and a
receiver. We also propose a method to probabilistically generate a strongly
phase-correlated quantum state via continuous measurement of independent
lasers, which is applicable to realizing CVQT without the additional optical
path.Comment: 5 pages, 2 figure
Quantum description of light pulse scattering on a single atom in waveguides
We present a time dependent quantum calculation of the scattering of a
few-photon pulse on a single atom. The photon wave packet is assumed to
propagate in a transversely strongly confined geometry, which ensures strong
atom-light coupling and allows a quasi 1D treatment. The amplitude and phase of
the transmitted, reflected and transversely scattered part of the wave packet
strongly depend on the pulse length (bandwidth) and energy. For a transverse
mode size of the order of , we find nonlinear behavior for a few
photons already, or even for a single photon. In a second step we study the
collision of two such wave packets at the atomic site and find striking
differences between Fock state and coherent state wave packets of the same
photon number.Comment: to appear in Phys. Rev.
- âŠ