11 research outputs found

    Restoration of Gene Function by Homologous Recombination: from PCR to Gene Expression in One Step

    No full text
    We have developed a simple method for single-step cloning of any PCR product into a plasmid. A novel selection principle has been applied, in which activation of a drug selection marker is achieved following homologous recombination. In this method a DNA fragment is amplified by PCR with standard oligonucleotides that contain flanking tails derived from the host plasmid and the complete λP(R) or rrnA1 promoter regions. The resulting PCR product is then electroporated into an Escherichia coli strain harboring both the phage λ Red functions and the host plasmid. Upon homologous recombination of the PCR fragment into the plasmid, expression of a drug selection marker is fully induced due to restoration of its truncated promoter, thus allowing appropriate selection. Recombinant plasmid vectors encoding β-galactosidase and neomycin phosphotransferase were constructed by using this method in two well-known Red systems. This cloning strategy significantly reduces both the time and costs associated with cloning procedures

    Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    Get PDF
    Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrated genetic and epigenetic (DNA methylation and chromatin) profiling. We found that the basal-like trait is generally dominant and is largely defined by epigenetic repression of luminal transcription factors. Definition of super-enhancers highlighted a core program common in luminal cells but a high degree of heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells are sufficient to induce a luminal-to-basal phenotypic switch, implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required for luminal-basal fusions, and we identified EN1, TBX18, and TCF4 as candidate transcriptional regulators of the luminal-to-basal switch. Our findings highlight the remarkable epigenetic plasticity of breast cancer cells

    The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24– stem cell–like breast cancer cells in human tumors

    No full text
    Intratumor heterogeneity is a major clinical problem because tumor cell subtypes display variable sensitivity to therapeutics and may play different roles in progression. We previously characterized 2 cell populations in human breast tumors with distinct properties: CD44+CD24– cells that have stem cell-like characteristics, and CD44–CD24+ cells that resemble more differentiated breast cancer cells. Here we identified 15 genes required for cell growth or proliferation in CD44+CD24– human breast cancer cells in a large-scale loss-of-function screen and found that inhibition of several of these (IL6, PTGIS, HAS1, CXCL3, and PFKFB3) reduced Stat3 activation. We found that the IL-6/JAK2/Stat3 pathway was preferentially active in CD44+CD24– breast cancer cells compared with other tumor cell types, and inhibition of JAK2 decreased their number and blocked growth of xenografts. Our results highlight the differences between distinct breast cancer cell types and identify targets such as JAK2 and Stat3 that may lead to more specific and effective breast cancer therapies
    corecore