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SUMMARY

Basal-like and luminal breast tumors have distinct
clinical behavior and molecular profiles, yet the
underlying mechanisms are poorly defined. To inter-
rogate processes that determine these distinct phe-
notypes and their inheritance pattern, we generated
somatic cell fusions and performed integrated
genetic and epigenetic (DNA methylation and chro-
matin) profiling. We found that the basal-like trait is
generally dominant and is largely defined by epige-
netic repression of luminal transcription factors.
Definition of super-enhancers highlighted a core pro-
gram common in luminal cells but a high degree of
heterogeneity in basal-like breast cancers that corre-
lates with clinical outcome. We also found that pro-
tein extracts of basal-like cells are sufficient to
induce a luminal-to-basal phenotypic switch,
implying a trigger of basal-like autoregulatory cir-
cuits. We determined that KDM6A might be required
for luminal-basal fusions, and we identified EN1,
TBX18, and TCF4 as candidate transcriptional regu-
lators of the luminal-to-basal switch. Our findings
highlight the remarkable epigenetic plasticity of
breast cancer cells.
Ce
INTRODUCTION

Breast tumors are highly heterogeneous and are classified into

ER+, HER2+, and ER�PR�HER2� (triple-negative breast cancer

[TNBC]) tumors based on the expression of estrogen and pro-

gesterone receptors (ER and PR) and HER2 or into luminal and

basal-like subtypes based on differentiation/epigenetic states

(Prat and Perou, 2011). ER+ and HER2+ tumors typically have

luminal features, whereas TNBCs are commonly basal-like,

have high propensity to metastasize to distant sites, and

currently lack targeted therapies, leading to generally worse clin-

ical outcome (Vaz-Luis et al., 2014). Breast cancer genome

sequencing studies failed to identify novel recurrent mutations

in basal-like breast tumors (Curtis et al., 2012; Shah et al.,

2012; TCGA, 2012), necessitating alternative approaches for tar-

geted therapeutics development (Lehmann et al., 2011). Target-

ing key transcriptional regulators of lineage dependency and

cellular phenotypes has been successful in a number of tumor

types, including ER+ breast cancer, but such approach has not

been explored in basal-like breast tumors, in part due to our

limited knowledge of these regulators in this cancer type.

Currently, prevailing hypotheses explaining breast tumor sub-

types are the distinct cell-of-origin or tumor-subtype-specific

transforming events models (Polyak, 2007; Visvader, 2011).

According to the cell-of-origin hypothesis, luminal tumors may

originate from luminal progenitors, whereas basal-like tumors

originate from breast epithelial stem cells. However, based on
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relatedness of gene expression profiles, luminal progenitors

were also proposed as the cell of origin for basal-like breast can-

cers in BRCA1 germline mutation carriers (Lim et al., 2009),

which is supported by functional studies in experimental model

systems (Liu et al., 2008; Molyneux et al., 2010).

We and others have previously described high degree of intra-

tumor heterogeneity for cellular phenotypes, including stem cell-

like and more differentiated luminal features in breast tumors

(Al-Hajj et al., 2003; Park et al., 2010a, 2010b; Shipitsin et al.,

2007). Interestingly, even in luminal ER+PR+ breast tumors,

a fraction of cancer cells are ER�PR� and CD44+CD24� with

stem cell-like features, but cells with a luminal phenotype are

rarely observed in basal-like breast cancers. Based on these ob-

servations, we hypothesized that basal-like breast tumors may

contain a factor(s) (i.e., genetic or epigenetic alteration) that

blocks luminal epithelial differentiation. Here, we used combined

somatic cell genetic and integrative epigenomics approaches to

investigate molecular mechanisms that define basal-like and

luminal breast cancer cell phenotypes and identify key regulators

of these processes. We found that the basal-like phenotype is

usually dominant, but, apart from displaying extinguished

luminal features, it is not defined by a specific epigenetic state

and displays a high degree of heterogeneity.

RESULTS

Somatic Cell Fusions of Luminal and Basal-like Breast
Cancer Cells
To investigate the role of hereditary factors in breast tumor sub-

types, we generated somatic cell hybrids by the fusion of basal-

like and luminal breast cancer cell lines resistant to puromycin

and G418, respectively. Homofusions (fusion of the same cell

line to itself) and heterofusions of different basal-like cell lines

were also generated as controls. Pooled populations of hybrid

cells resistant to both puromycin and G418 were used for subse-

quent experiments. We tested combinations of multiple basal-

like and luminal breast cancer cell lines, but not all fusions

yielded viable and reasonably stable hybrids (Table S1). To prove

the hybrid nature of the cells, first we performed fluorescence-

activated cell sorting (FACS) with propidium iodide and

confirmed that the nuclear DNA content of the fusions was

the sum of the parental cells (Figures 1A and S1A). Fusions

judged to be successful by FACS were subjected to STR (short

tandem repeat) polymorphism and SKY (spectral karyotyping)

analyses to confirm the presence of chromosomes from both

parents (Figures 1B and S1B; Table S2). We also performed

whole-genome sequencing of selected parental cell lines and

their heterofusions, which confirmed the presence of both

genomes (Figures 1C and S1C) andmutant alleles of known can-

cer-driving (CAN) genes (Sjöblom et al., 2006), including TP53,

BRCA1, GATA3, and PIK3CA (Table S3), in the heterofusions.

Most heterofusions contained all CAN genes present in both

parental cells, implying lack of selection against specific muta-

tions in the viable fusions.

Fusion Cell Phenotypes
We began characterizing the fusions by assessing their

morphology and the expression of known luminal (e.g.,
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E-cadherin,) and basal (e.g., vimentin) cell-specific markers. All

luminal-basal heterofusions derived from the SUM159PT and

CAL51 basal-like breast cancer cell lines displayed cellular

morphology, vimentin, E-cadherin (Figures 2A and S2A), CD24,

CD44, ERBB3, and ITGA5 (Figures S2B and S2C) patterns

more similar to those of parental basal-like cells. In contrast,

the MDA-MB-231/MCF7 heterofusion showed higher similarity

to parental MCF7 luminal cells with respect to morphology and

the expression of these markers (Figures 2A, S2B, and S2C).

Heterofusion of Hs578T basal and T-47D luminal cell lines also

displayed a basal phenotype, but these cells rapidly lost the

T-47D cell genome and thus were excluded from further ana-

lyses. These results are largely in agreement with two prior

studies describing universal loss of E-cadherin expression in

luminal-basal fusions of breast epithelial cells (Hajra et al.,

1999; MacDougall and Matrisian, 2000).

Next, we evaluated the functional properties of the cells using

assays that distinguish basal-like and luminal breast cancer cells

such as cell migration, invasion, sensitivity to selected com-

pounds (Marotta et al., 2011), and ability to form tumors (Figures

2B–2E). Compared to parental luminal cells, all luminal-basal

heterofusions were more migratory, invasive, and tumorigenic,

but they were still distinguishable from parental basal-like cells.

The MDA-MB-231/MCF7 fusion was more similar to luminal

MCF7 cells in migration and invasion assays (Figure 2B) but dis-

played an intermediate phenotype in xenograft studies (Figures

2D–2E). Although sensitivity to compounds that most differen-

tially affected luminal and basal-like parental cells (e.g., Taxol)

clustered the cells into luminal and basal groups, the sensitivity

profiles of most luminal-basal heterofusions were still distinct

from both parents (Figure 2C).

Molecular Profiles of Fusion Cells: Gene Expression
Patterns
To investigatemolecularmechanisms that define the phenotypes

of luminal-basal heterofusions, we first analyzed the global gene

expression profiles of each parental and fusion cell line. Using

PCAbased on all transcripts detected, we observed clear luminal

and basal clusters, with the CAL51 cell line being more unique.

Some of the parental luminal cells were ER+ and/or HER2+ (Table

S1), but this did not appear to influence the molecular classifica-

tion of the derived fusions. The gene expression profiles of all six

SUM159-derived luminal-basal heterofusions showed high simi-

larity to SUM159 cells, whereas the CAL51/MCF7 andMDA-MB-

231/MCF7 fusionswere intermediate between their parental lines

but still closer to luminal cells, suggesting that SUM159cells have

themost dominant basal-like phenotype (Figure 3A).We selected

the top 72 genes that were consistently and significantly differen-

tially expressed (log2ratio > 4 and p value < 0.01, t test) between

luminal andbasal parents (Figure3B;TableS4). Theexpressionof

these 72 genes clustered all cell lines into luminal and basal

groups, with three heterofusions (CAL51/MCF7, MDA-MB-231/

MCF7, and SUM159/21NT) showing higher relatedness to the

luminal than the basal parent. More in-depth analysis of the

expressionpatternof these72genes revealed that theexpression

of luminal transcription factors (TFs) FOXA1 and SPDEFwas pre-

served in fusionswith luminal features (Figure 3B; TableS4). Simi-

larly, the consistent expression of ETS1, AXL, CSF1, and targets



Figure 1. Confirmation and Phenotype of Fusions

(A) Cellular DNA content of basal SUM159 (red) and luminal MCF7 (blue) cell lines and their homo- (black) and heterofusions (dark green) based on FACS analysis

of cells stained with propidium iodide.

(B) Representative SKY (spectral karyotyping) analysis of parental SUM159 and MCF7 cell lines and their homo-/heterofusions.

(C) Circos plots depicting genomic alterations in parental SUM159 and MCF7 cell lines and in their heterofusion.

See also Figure S1 and Tables S1, S2, and S3.
of the transforming growth factor b (TGF-b) signaling pathway

(e.g., FN1) in all fusions with basal-like phenotype suggests their

potential roles in basal-like cells. The expression pattern of these

72 genes also classified primary human breast tumors into

luminal and basal-like subtypes, supporting their physiologic

relevance (data not shown).
Ce
Genetic Inheritance Patterns of Heterofusions
Next, we investigated the potential role of genetic factors as de-

terminants of fusion phenotypes by analyzing allelic inheritance

based on Affymetrix SNP6.0 array hybridization of DNA from

parental and fusion cells. To assist in genotyping of highly aneu-

ploid and genetically complex samples such as fusions, we
ll Reports 11, 1549–1563, June 16, 2015 ª2015 The Authors 1551



Figure 2. Functional Properties of the Parental Cell Lines and Their Fusions

Colors indicate parental basal (red) and luminal (blue) cell lines or their homofusions and luminal-basal heterofusions (purple) in all panels.

(A) Cellular morphology and expression of basal vimentin and luminal E-cadherin markers in parental basal and luminal cell lines and in their homo- and het-

erofusions. Scale bar corresponds to 25 mm.

(B) Migration and invasion of parental basal (red) and luminal (blue) cell lines and in their homo- and hetero-fusions. y axis indicates the number of cells per well.

Data are shown as mean ± SD of a representative experiment performed in triplicate. The experiment was repeated three times with similar results.

(C) Heatmap depicting cellular viability after 5 days of treatment with the indicated compounds. Color scale indicates higher sensitivity (red) and relative

resistance (blue).

(D) Kaplan-Meier plots depicting the tumor-free survival of mice after transplantation with the indicated breast cancer cells.

(E) Immunofluorescence analysis of xenografts derived from parental and fusion cell lines for luminal (CDH1-E-cadherin) and basal (VIM -vimentin) markers. Scale

bar corresponds to 25 mm.

See also Figure S2.
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Figure 3. SNP Inheritance, Gene Expression, and DNA Methylation Patterns in Parental Cell Lines and Fusions

Colors indicate parental basal (red) and luminal (blue) cell lines and their luminal basal (purple) and basal-basal (dark red) heterofusions in all panels.

(A) PCA plot depicting the relatedness of cells based on gene expression profiles.

(B) Most significantly differentially expressed genes and informative SNPs within a distance of 10 Mb from their transcription start site in each of the fusions. The

colors red and blue in the dendrogram indicate clusters of genes with strong association with basal and luminal phenotype, respectively, whereas genes marked

in blue and red are transcription factors with known roles in luminal and basal cells, respectively. Blue and red colors indicate SNPs inherited from luminal and

basal parental cell lines, respectively. Scale indicates normalized expression values.

(C) PCA plot depicting the relatedness of cells based on DNA methylation profiles.

(D) Dendrogram depicting similarities and differences among cells based on DNA methylation patterns of the most variable probe in each gene. Color scale

indicates beta-values (0–1) defined using Illumina Infinium HumanMethylation450 BeadChip. Variable probes were determined based on the SD of all basal and

luminal parental lines.

(E) Validation of selected genes by methylation-specific PCR (MSP).

See also Figures S3 and S4 and Tables S2, S5, S6, S7, and S8.
applied highly stringent filters, leaving only themost robust SNPs

based on their behavior in public HapMap data (Frazer et al.,

2007) and in our samples (see Supplemental Experimental

Procedures for details). After filtering, 22,497–52,119 SNP calls

remained, depending on the fusion. These markers were

dispersed throughout all autosomes and the X chromosome,

with �100 kb between markers on average, allowing us to

assess whole genome at moderate resolution. Of these geno-

types, 4.8%–27% were ‘‘informative,’’ allowing unequivocal

assignment of its parental cell of origin (Figure S3A; Table S5;

see Supplemental Experimental Procedures for details). In the

five heterofusions with a more basal-like phenotype, a high frac-

tion of informative SNPs were inherited from the SUM159 basal-

like parent, with the SUM159/MCF7 fusions displaying the most
Ce
balanced luminal to basal allele ratio (35.1 to 64.9 of luminal to

basal). In contrast, the SUM159/ZR75, SUM159/21NT, and

MDA-MB-231/MCF7 fusions had a predominance of luminal

parental SNPs (Figures 3B and S3B).

We also analyzed whether any particular chromosome

showed skewed inheritance and found a strong bias toward X

chromosome inherited from SUM159 basal-like parental cells

in all heterofusions derived from it (Figure S3A; Table S6). This

result was intriguing, as perturbed X chromosome inactivation

has been implicated in BRCA1-associated and sporadic basal-

like breast cancers (Ganesan et al., 2002; Richardson et al.,

2006). In order to determine if X inactivation status was associ-

ated with biased X chromosome inheritance, we analyzed the

expression of XIST by RT-PCR. We found that XIST was
ll Reports 11, 1549–1563, June 16, 2015 ª2015 The Authors 1553



expressed in the SUM159 basal-like cell line and in most fusions

derived from it (Figure S3C), indicating that at least one copy of

the inactive X from SUM159 was inherited in most cells with

basal-like phenotype. However, XIST was also expressed in

21NT and ZR75-1 luminal lines, and the expression of X chromo-

some-linked genes (protein-coding mRNAs) in the fusions did

not correlate with basal-like and luminal phenotypes (data not

shown). Thus, based on these data, it is unclear what, if any,

role the X chromosome could play in defining luminal and

basal-like features.

To test whether allelic inheritance correlates with cell-type-

specific gene expression patterns, we assessed informative

SNPs located near (±1 Mb) the TSS (transcription start site) of

differentially expressed genes. Over 80% of the genes differen-

tially expressed between basal-like and luminal breast cancer

cells had an informative SNP within 1 Mb of its TSS, and in

60%–90% of these (depending on the fusion), the expression

pattern was concordant with allelic inheritance (Figures

S3B–S3D; Table S5). However, for the most consistently and

highly differentially expressed genes, allelic inheritance of infor-

mative SNPs was not associated with the cell type specificity

of gene expression (Figures 3B and S3B). For example, in the

SUM159/MCF7 fusion the ratio of informative SNPs located

near genes with high cell-type-specific expression was inherited

with almost the same frequency from the SUM159 basal-like and

MCF7 luminal parent regardless of expression pattern. There

were an equal number of genes displaying basal expression

pattern with alleles inherited from the luminal parent and genes

with luminal expression but SNPs with basal origin (Figure 3B

and S3B–S3D). Thus, it appears that the phenotype and gene

expression profiles of the fusions are likely to be defined by

non-genetic factors.

Epigenetic Inheritance Patterns
Next, we investigated the potential role of epigenetic mecha-

nisms by analyzing DNA methylation and histone H3 lysine 27

trimethylation (H3K27me3) and acetylation (H3K27ac) patterns

of each parental cell line and fusion. We chose to analyze

H3K27me3 patterns, as this has been linked to stem cell-like

and more differentiated features in multiple tissue types (Mikkel-

sen et al., 2007), including normal human breast epithelial cells

(Choudhury et al., 2013; Maruyama et al., 2011). Similarly,

H3K27ac enrichment identifies super-enhancers that are partic-

ularly important for defining cellular identity (Hnisz et al., 2013;

Whyte et al., 2013).

In contrast to expression profiles, the DNA methylation pat-

terns of luminal-basal heterofusions showed no clear luminal

and basal clustering but an intermediary state (Figures 3C, 3D,

S4A, and S4B). Correlating with related data in primary tumors

(Fackler et al., 2011), luminal cell lines in general were more

methylated than basal-like ones (Figures 3D and S4A). All three

heterofusions with some luminal features (MDA-MB-231/

MCF7, CAL51/MCF7, and SUM159/21NT) were more similar to

their luminal than basal parent. These fusions displayed fairly

balanced luminal to basal allele ratio, with a bit more skewing

toward luminal alleles (Figures 3B and S3B); however, we did

not observe any significant association between allele-specific

inheritance and DNA methylation status (Table S7). We also
1554 Cell Reports 11, 1549–1563, June 16, 2015 ª2015 The Authors
analyzed associations between promoter DNA methylation and

gene expression and found that basal-high (highly expressed

in basal cells) genes are more likely to be hypermethylated in

luminal cells than luminal-high (highly expressed in luminal cells)

genes in basal cells (Figures S4C and S4D). These results are in

agreement with our prior findings in normal mammary epithelial

cells (Choudhury et al., 2013; Maruyama et al., 2011) and imply

distinct roles for DNA methylation in the regulation of cell-type-

specific expression patterns in luminal and basal cells. We

validated the methylation of selected genes that showed signif-

icant luminal-basal differences by methylation-specific PCR

(Figure 3E).

Next, we performed PCA of the samples based on H3K27me3

enrichment and found a clear clustering and separation of

parental luminal cells but a high degree of heterogeneity of

parental basal cells and heterofusions (Figure 4A). Virtually all

three basal-like parental cell lines were unique. Some of the

SUM159-derived heterofusions showed high similarity to

SUM159 cells, while others formed a cluster in between luminal

and basal parental cells. Similar to gene expression and DNA

methylation profiles, we did not observe any association bet-

ween allele-specific inheritance and H3K27me3 enrichment pat-

terns. For example, the basal-high ZEB2 gene showed luminal

and basal allelic inheritance in the SUM159/MCF7 and

SUM159/T47D fusions, respectively, but the H3K27me3 enrich-

ment and expression pattern was similar to the basal parent in

both fusions, implying reprogramming of the luminal genomes

to basal-like chromatin patterns (Figure S4E).

Clustering of the samples based on H3K27ac enrichment pro-

files also showed very tight and distinct luminal cluster and high

heterogeneity of basal-like parental cells and heterofusions

(Figure 4B). We defined super-enhancers based on H3K27ac

peak counts to identify key drivers of cellular identity. Clustering

of the samples based on super-enhancers depicted an even

more striking clustering of the luminal cell lines with high related-

ness to each other and very distinct features from the highly het-

erogeneous basal-like group (Figure 4C). More detailed analysis

of super-enhancers demonstrated that the high similarity of

luminal cells is likely driven by luminal TFs (FOXA1, GATA3,

ESR1, and SPDEF) that appear to be among the top-ranking

super-enhancers in all luminal cell lines (Figure 4D; Table S8).

In contrast, super-enhancers in basal cell lines did not show

almost any overlap with the exception of HIF1A that was a top

super-enhancer in both SUM159 and MDA-MB-231 cells. Inter-

estingly, the super-enhancers of heterofusions seemed to reflect

the dominance of basal-like parental lines in each case, even for

fusions with more luminal phenotypes. In the CAL51/MCF7

fusion, none of the MCF7 super-enhancers were among the

top-ranking ones, whereas in the MDA231/MCF7 fusion,

GATA3, FOXA1, ELF3, NCOA3, and CDH1 were detected as

low-ranking super-enhancers together with the high-ranking

MDA-MB-231-derived ones. All SUM159-derived heterofusions

displayed high-ranking basal super-enhancers, with luminal

ones (GATA3) only detected in SUM159/T47D fusion, again

highlighting the strong dominance of SUM159 cells. The allelic

inheritance again did not correlate with H3K27ac enrichment

patterns, confirming epigenetic reprogramming of the genome

(Figure 4E).



Figure 4. Chromatin Profiles of Parental and Fusion Cells

(A) PCA plot depicting the relatedness of cells based on H3K27me3 patterns.

(B and C) Heatmap and dendrogram from hierarchical clustering analysis depicting similarities and differences among cell lines based on H3K27ac patterns

based on top 10% of the most variable peaks considered (B) or super-enhancers (C).

(D) Hockey-stick plots highlighting super-enhancers in each cell line.

(E) Chromatin immunoprecipitation sequencing (ChIP-seq) reads for H3K27ac for CDH1 and SOCS3 in parental and fusion cells are shown as tag density along

chromosomal position. Height of each track was scaled to total ChIP-seq counts. Allelic inheritance information is indicated as color bar along chromosomal

position in the middle.

See also Figure S4 and Tables S4, S7, and S8.
These results highlight the dominance of the basal-like breast

cancer epigenome over the luminal one and epigenotype versus

genotype, but they also highlight high degree of epigenetic het-

erogeneity of basal-like breast cancer cell lines and heterofu-

sions that were not evident by expression profiling.

Integrated Molecular Profiles
Next, we integrated gene expression, DNA methylation, and

H3K27me3 and H3K27ac enrichment patterns to investigate

potential associations and define which onemay be a better pre-

dictor of cellular phenotypes. First, we analyzed the epigenetic

patterns of the 72 topdifferentially expressed genes (Figure S5A).

Approximately half (40%–51%, depending on comparison) of

the 72 most significantly differentially expressed genes also
Ce
showed differential H3K27me3 and H3K27ac enrichment and

differences in DNAmethylation (Table S7), suggesting their regu-

lation by epigenetic mechanisms. The subset of genes (17

genes) with differential H3K27me3 marks between the luminal

and basal parent showed significantly (p = 0.009895) lower

expression levels than the subset (55 genes) without a differential

H3K27me3 mark, whereas subsets of genes with and without

differential H3K27ac marks showed no difference in expression

and DNAmethylation. In contrast to gene expression, the epige-

netic marks associated with these 72 genes did not show clear

luminal and basal clustering of the samples, although they still

separated the parental luminal cells from all others (Figure S5A).

Analysis of the genes most differentially methylated between

parental luminal and basal lines gave a clearer picture and
ll Reports 11, 1549–1563, June 16, 2015 ª2015 The Authors 1555



Figure 5. Integrated View of Gene Expression, DNA Methylation, H3K27me3, and H3K27ac Patterns
(A) Heatmap depicting clustering of samples based on gene expression, DNA methylation, H3K27me3, and H3K27ac profiles of the top 50 most differentially

methylated genes between parental luminal and basal breast cancer cells.

(B) Gene expression, DNA methylation, and H3K27ac enrichment patterns of luminal transcription factors.

(legend continued on next page)
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segregated all heterofusions into a distinct intermediary group

(Figure 5A). These results imply that epigenetic patterns may

provide a better description of cellular states than gene expres-

sion profiles and that the DNA methylation profiles in the fusions

are not completely reprogrammed but rather reflect a mixture of

luminal and basal features.

Because TFs are key determinants of cellular states, we

analyzed their expression and epigenetic patterns in further

detail. We identified 123 TFs (34 luminal and 89 basal) that

showed significant differences in expression between cells

with luminal and basal phenotypes (Table S4). The basal TFs

included several members of the ETS family (e.g., ETS1),

ZEB1, and ZEB2, whereas top luminal TFs include FOXA1,

GATA3, SPDEF, and ESR1. None of these basal TFs were

among the top basal super-enhancers, and HIF1A, which was

a top basal super-enhancer, was not among the top significantly

differentially expressed genes. In contrast, all top differentially

expressed luminal TFs were also top luminal super-enhancers

common among all luminal lines (Figure 4D). These key luminal

TFswere not expressed and their promoter region was hyperme-

thylated in cells with basal phenotype (Figures 5B and S5B),

which is particularly interesting, since most luminal-high genes

were not hypermethylated in basal cells (Figures S4C and

S4D), implying preferential epigenetic regulation of TFs.

These results further highlight the relative homogeneity of

the luminal breast cancer cell state and TFs defining it, which

is in contrast to the high heterogeneity of basal-like breast

cancer cell state, with lack of luminal TFs being the main

commonality.

Clinical Relevance of Epigenetic Heterogeneity in TNBC
To investigate the potential clinical relevance of epigenetic het-

erogeneity in basal-like breast cancer, we first defined epige-

netic differences between SUM159 cells that have the most

dominant basal-like trait based on our fusion studies and

MDA-MB-231 and CAL-51 cells that were more permissive to

luminal differentiation. Then we classified TNBCs in the TCGA

cohort (TCGA, 2012) based on probes that displayed DNA hypo-

methylation in SUM159 relative to the CAL-51 andMDA-MB-231

cell lines (beta < 0.1 in SUM159, beta > 0.9 in the other two lines)

and analyzed differences in clinical outcome between groups.

Although there was a trend for more methylated cases being

associated with shorter overall survival, this did not reach

statistical significance (Figure S5C). Thus, we explored the

METABRIC cohort (Curtis et al., 2012) that has a larger number

of cases; however, it lacks epigenetic data. Therefore, we inves-

tigated differences in survival based on the expression of genes

that were enriched for H3K27ac and associated with super-

enhancers in any of the three basal cell lines (Figure 5C) or only

in SUM159 cells (Figure 5D). We identified 717 and 163 such

genes, respectively, and their expression classified ER� breast

tumors into two groups with statistically significant differences
(C) Kaplan-Meier plot depicting disease-free survival of breast cancer patients in t

groups 1 and 2 based on the expression of super-enhancer-associated genes (7

(D) Kaplan-Meier plot depicting disease-free survival of breast cancer patients in t

groups 1 and 2 based on the expression of 186 probes (163 genes) positive for s

See also Figure S5 and Tables S4, S7, and S8.
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in disease-free survival and tumors, with higher expression of

these genes having shorter survival. Thus, heterogeneity for his-

tone modification profiles appears to classify ER� breast tumors

into clinically relevant groups. Because disease-free and overall

survival is mainly determined by progression to distant metasta-

tic disease, our results imply that the risk of metastatic progres-

sionmight be defined by epigenetic programs, and therefore, it is

a modifiable risk.

Nuclear Reprogramming of Luminal Breast Cancer Cells
To further investigate if basal-like and luminal breast cancer cell

phenotypes are defined by non-genetic factors, we performed

in vitro reprogramming experiments (Collas and Gammelsaeter,

2007; Collas and Taranger, 2006). Specifically, we exposed

streptolysin-O permeabilized luminal cells (e.g., MCF7) to

whole-cell extracts from basal-like (e.g., SUM159 and MDA-

MB-231) breast cancer cells for 1 hr followed by resealing the

cells and cultivation for 2–6 weeks (Figure 6A). Reprogrammed

cells were analyzed for CD24 and CD44 as luminal and basal

cell-surface markers, respectively. A small (<2%) but reproduc-

ible percentage of MCF7 cells exposed to extracts from

SUM159, but not MDA-MB-231, cells switched from the luminal

CD24+CD44� to basal CD44+CD24� phenotype, implying suc-

cessful reprogramming (Figure 6B). The frequency of these cells

is in agreement with results of similar assays performed in other

cell types, including embryonic stem cells (Egli et al., 2008;

Hanna et al., 2010). The results using Dnase-I-treated extracts

were essentially the same (data not shown), indicating that the

transmission of DNA is not required. We characterized these

CD44+CD24� cells in further detail following their enrichment

by FACS. The cells displayed spindle-shape morphology

and high expression of vimentin, a basal-specific marker (Fig-

ure 6C). We also analyzed the expression of several other

basal-like (e.g., VIM, ITGA5, IGFBP7, and CD44) and luminal

(e.g., CDH1 and ERBB3) markers by qRT-PCR in control and

reprogrammed MCF7 cells. The reprogrammed CD44+ cells

expressed basal-like markers comparable to the parental

SUM159 cells but still maintained the expression of the luminal

markers analyzed (Figures 6D–6E), implying an incomplete

phenotypic switch. Correlating with this, analysis of the DNA

methylation status of a set of cell-type-specifically expressed

and methylated genes by MSP (methylation-specific PCR) re-

vealed an intermediary pattern in these CD44+ cells (Figure 6F).

We tried to expand these CD44+CD24� cells to further charac-

terize their molecular and functional features, but the majority

of cells lost their phenotype during repeated passage and

reverted back to CD44�CD24+ cells. We also tried reprogram-

ming basal-like cells (SUM159 and CAL51) with nuclear extracts

from luminal cells (MCF7 and 21NT), but we were not able to

detect any luminal features in basal-like cells exposed to luminal

extracts (data not shown). These results are consistent with our

somatic cell fusion studies and further emphasize the general
heMETABRIC cohort with ER negative (ER�) tumors (440 cases) classified into

17 genes) in any of the three parental basal cell lines analyzed.

he METABRIC cohort with ER negative (ER�) tumors (440 cases) classified into

uper-enhancers in SUM159 cell line within 20 kb of the TSS.
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Figure 6. Reprogramming of Luminal Breast Cancer Cells Using Nuclear Extracts

(A) Schematic outline of the in vitro reprogramming assay.

(B) FACS analysis of CD24 luminal and CD44 basal markers 6 weeks after in vitro reprogramming.

(C) Morphological and immunofluorescence analysis of CD44+ fractions of the reprogrammed MCF7 cells.

(D) Gene expression analysis of MCF7 cells reprogrammed with protein extracts fromMDA-MB-231 (MDA-MB-231 ex), SUM159 (SUM159 ex), andMCF7 (MCF7

ex) cells. Control represents the cells permeabilized by Streptolysin ‘‘o’’ (SLO) alone.

(E) Gene expression analysis of parental MCF7, MDA-MB-231, and SUM159 cell lines, and CD44+ fraction of the reprogrammed MCF7 cells.

(F) Methylation-specific PCR analysis of MCF7, MDA-MB-231, and SUM159 parental cell lines, and CD44+ fraction of the reprogrammed MCF7 cells.
dominance of the basal-like trait and the role of non-genetic

mechanisms in the induction of the luminal to basal-like pheno-

typic switch.
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Transcriptional Regulators of the Basal-like Phenotype
To identify factors that may mediate the luminal to basal-like re-

programming of breast cancer cells, we focused on TFs that are



epigenetically regulated in a cell-type-specific manner, since

these are strong candidates for playing key roles in defining

cellular phenotypes. We identified 61 TFs with higher expression

in basal-like parental cells and heterofusions with basal-like

phenotype compared to luminal parental cells and heterofusions

with mixed luminal-basal phenotypes (Table S4). We found that

the promoter region of 8 of these TFs (CREB5, EN1, FOXC2,

MSC, TBX18, TCF4, TSHZ2, and ZBTB16) is enriched for

H3K27me3 in luminal parental and heterofusion cells with low

expression of these genes, implying potential epigenetic regula-

tion. Among these 8 TFs, the expression of EN1 and TBX18 dis-

played the most significant association between luminal and

basal features in both parental and fusion cells (Figure 7A).

Next, we tested whether the expression of these 8 and 19 other

top-candidate TFs (total 27) alone or in combination would be

able to induce a luminal-to-basal phenotypic switch in MCF7

cells as assessed by FACS analysis for the loss of luminal

markers such as CD24. We found that MCF7 cells expressing

EN1, TBX18, or TCF4 alone or in combination consistently

showed a significant increase in the CD24� cell population, sug-

gesting loss of luminal features (Figure 7B), although we did not

detect a gain of basal markers analyzed (e.g., CD44), implying

incomplete reprogramming.

Because our somatic cell fusion studies suggested that

luminal to basal reprogramming is determined by epigenetic

mechanisms, we also investigated whether modulating the ac-

tivity of epigenetic regulators would influence the success of

reprogramming induced by the expression of TFs or by cell

fusion. Luminal lines overall had higher level of DNA methyl-

ation than basal ones (Figure 3D) and preferentially silenced

basal-high genes by DNA methylation (Figures S4C and

S4D). Thus, we first tested whether the expression of known

DNA demethylases TET1, TET2, TET3, AICDA, GADD45a,

GADD45b, TDG, and MBD4 in luminal MCF7 cells, alone or

in combination, would be sufficient to induce a luminal-to-

basal switch, but we did not detect loss of luminal marks in

any of the combinations tested (data not shown). Similarly,

pre-treating SUM159 or MCF7 cells with inhibitors of DNMTs,

EZH2 (H3K27 histone methyltransferase), and KDM4 (H3K9

and H3K36 histone demethylase) prior to cell fusion did not

have any effect on the number of fusion cells and their pheno-

type, despite significant effects on histone modification pat-

terns (Figures S6A–S6C). In contrast, transient pre-treatment

of SUM159 cells with KDM6A/B H3K27me3 histone demethy-

lase inhibitor GSK-J4 (Kruidenier et al., 2012) prior to fusion

resulted in a significant reduction in the number of viable het-

erofusion cells (Figure 7C). This decrease was not due to the

inhibitory effects of GSK-J4 on cell growth, as treatment of

SUM159 cells or SUM159/MCF7 fusions did not reveal a sig-

nificant decrease in cell numbers (Figures S6D and S6E). Tran-

sient downregulation of KDM6A, but not KDM6B, by small

interfering RNAs (siRNAs) (Figure S6F) had similar effects on

the frequency of viable heterofusions (Figure 7D), although

we also observed a slight decrease in cell growth (Figure S6G).

Both GSK-J4 treatment and downregulation of KDM6A led to

increased H3K27me3 levels (Figures 7E and 7F), and neither

pharmacologic inhibition nor downregulation of KDM6A

changed the expression of luminal- and basal-specific genes
Ce
in the SUM159/MCF7 heterofusions (Figures 7G and 7H).

These results imply that, similar to what was observed for

the generation of induced pluripotent stem cells (iPSCs), the

activity of KDM6A/UTX may be required for the epigenetic

reprogramming of breast cancer cells (Mansour et al., 2012).

DISCUSSION

Here, we present multiple lines of evidence that the basal-like

phenotype in breast cancer is generally a dominant trait defined

byepigeneticmechanisms.Thisconclusion issupportedbyour in-

tegrated genomic analyses of somatic cell fusions generated from

luminal and basal-like breast cancer cells and nuclear reprogram-

ming and TF studies. While our data cannot fully rule out the

possible contribution of genetic factors, even if such factors exist,

they must operate via epigenetic mechanisms. Our results also

highlight significant epigenetic heterogeneity in basal-like breast

cancer cell lines, with suppression of transcription programs

driving luminal differentiation being the main commonality.

We also found some fundamental differences in the epigenetic

programs of luminal and basal-like breast cancer cells that may

reflect the distinct cell of origin of these tumors or tumor subtype-

specific transforming events. Specifically, basal-like breast tu-

mors have an overall lower level of DNAmethylation than luminal

ones, and luminal lineage markers are preferentially silenced

by H3K27me3 in basal-like cells. In contrast, in luminal breast

cancer cells, stem/basal cell markers are frequently silenced

by DNA methylation. Similar methylation patterns were

observed in normal CD24+ luminal and basal (CD24�CD10+ or

CD24�CD10�CD44+) cells (Maruyama et al., 2011), implying

that DNA methylation may be a feature of luminal cells and

may be required for the requisition of a differentiated state.

One limitation of our study is the use of Illumina Beadchips for as-

sessing DNAmethylation, which does not provide information at

a single-nucleotide and genome-wide scale; thus, it remains to

be seen if these hypotheses are supported by higher-resolution

DNA methylation data.

Our most surprising finding is that even a transient exposure of

MCF7 luminal cells to nuclear extracts of SUM159 basal cells

was sufficient to induce a transient phenotypic switch in a subset

of cells. This result implies that some key proteins could initiate a

cascade of events, likely involving positive feedback loops and

cross-regulatory networks of TFs, which could suppress luminal

differentiation programs. Our data indicate the lack of specific

TFs that would be common in all basal-like breast cancer

and suggest that epigenetic repression of luminal factors is

the main commonality. Nevertheless, we identified three TFs

(TBX18, EN1, and TCF4), the overexpression of which was

able to induce the repression of some luminal features in

MCF7 luminal breast cancer cells, although this was not a stable

phenotypic switch. None of these TFs have been characterized

in detail in breast cancer. T-box 18 (TBX18) has not been impli-

cated in any cancer type, but it plays essential roles in embryonic

development and is required for the epithelial to mesenchymal

transition induced by TGF-b in epicardial cells during heart

development (Takeichi et al., 2013). Engrailed 1 (EN1) encodes

a homeobox protein that is required for mid-hindbrain develop-

ment. EN1 is hypermethylated in a number of cancer types,
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Figure 7. Epigenetic Reprogramming of Breast Cancer Cells

(A) Expression of EN1, TBX18, and TCF4 in parental and fusion cell lines.

(B) FACS analysis of CD24 luminal marker inMCF7 cells overexpressing basal-specific transcription factors EN1, TBX18, and TCF4 alone or in combination; LacZ

was used as control.

(C) Representative plates (top) and bar graphs (bottom) of colony growth assays assessing the frequency of colonies resulting from successful SUM159/MCF7

fusions derived from SUM159 cells pre-treated with 1 mM or 5 mM GSK-J4 or DMSO control (p < 0.05 when indicated, unpaired t test).

(D) Representative plates (top) and bar graphs (bottom) of colony growth assays assessing the frequency of colonies resulting from successful SUM159/MCF7

fusions derived from SUM159 cells transfected with non-targeting (NT) and siRNA-targeting KDM6A or KDM6B or both genes (p < 0.005 or p < 0.05 when

indicated, unpaired t test).

(legend continued on next page)
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and it was recently reported as a prosurvival factor in basal-like

breast cancer cells (Beltran et al., 2014). TCF4 is a key transcrip-

tional mediator of theWNT/b-catenin pathway and plays a role in

a wide-range of human malignancies, including breast cancer

(Polakis, 2007). We also found that transient pharmacologic or

genetic inhibition of KDM6A in SUM159 cells reduced the num-

ber of viable SUM159/MCF7 heterofusions without any clear ef-

fects on their phenotype. This is similar to what was described

for the generation of iPSCs from human fibroblasts, where

KDM6A catalytic activity is required for the induction, but not

the maintenance, of pluripotency during in vitro reprogramming

(Mansour et al., 2012).

Although spontaneous somatic cell fusions and nuclear

reprogramming are not likely to occur in vivo, the transfer of

proteins, mRNAs, and microRNAs by exosomes could induce

similar phenotypic switch within tumors (Valadi et al., 2007).

Correlating with this, a recent study described the enhancement

of pro-metastatic phenotype in bone marrow cells by mela-

noma-derived exosomes (Peinado et al., 2012). Future studies

are required to address if similar mechanisms may also

contribute to metastatic progression and therapeutic resistance

in heterogeneous tumors composed of mixtures of basal-like

and luminal breast cancer cells.

In summary, our results imply that basal-like breast cancer

phenotype is a generally dominant trait likely defined by epige-

netic rather than genetic mechanisms. We also found that

basal-like breast cancer cell lines and tumors are epigenetically

highly heterogeneous. As a consequence, these phenotypes

may change during disease progression and may be modifiable

therapeutically to improve treatment outcomes.

EXPERIMENTAL PROCEDURES

For further details, see the Supplemental Experimental Procedures.

Generation of Somatic Cell Fusions

First,we established derivatives of parental luminal andbasal cell lines resistant

topuromycinorG418by infecting thecellswithpBabe retrovirus expressing the

appropriate resistance gene followed by selection using the appropriate drug.

Stable pools of drug resistance cell lines were used to generate somatic cell

hybrids by the modification of the PEG fusion protocol (Davidson and Gerald,

1976) as previously described (Polyak et al., 1996). For cell lines that we could

not derive viable fusions using the PEG procedure, we also tried electrofusion

(performed byMayo Clinic Medical Laboratories) without success. The identity

of each cell line was confirmed by STR and SNP array analyses. For fusion with

epigenetic inhibitors, the IC50 (inhibitory concentration 50%) for each of the

inhibitors was determined using standard method. Briefly, 1,000–2,000 cells

wereplated in eachwell of 96-well plate, and increasingconcentrationsof inhib-

itors were added the next day. Five days after addition of inhibitors, cell viability

wasmeasuredusing theCTGmethod and IC50 determined. SUM159cellswere

pre-treated with GSK126, GSKJ4, and ML324 or DMSO control. The effect of

the inhibitors was confirmed by checking the protein expression levels for

H3K27me3, H3K9me3, and H3K26me3. 4 million SUM159 cells pre-treated
(E) Immunoblot analysis of H3K27me3 levels in MCF7, SUM159, and MCF7/SUM

control.

(F) Immunoblot analysis of H3K27me3 levels in SUM159 cells transfected with non

H3 was used as control.

(GandH)mRNAexpression of luminal (CDH1,ERBB3) andbasal (ITGA5,VIM) gene

with DMSO or 5 mM GSKJ4 (G) or derived from SUM159 cells transfected with no

Error bars in (C) and (D) denote SEM. See also Figure S6.
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with either the inhibitors or DMSO control were fused with 4 million MCF7 cells

using the sameprotocol describedpreviously. After 2weeksof selection, fusion

was confirmed by measuring DNA content and the colonies were stained with

0.5%crystal violet solution, and fusion cells were counted. To determine the ef-

fects of inhibitors on cell growth, inhibitor-treated cells used for fusion were

grown for 10 days and colonies stained and the number of cells counted.

Fusions with siRNAs for KDM6A/B:siRNAs against KDM6A and KDM6B were

purchased from Dharmacon in the form of ONTARGET-plus SMARTpool

reagents. Transfections of siRNA (25 nM) were performed using DharmaFECT

transfection reagents (Dharmacon) in accordance with themanufacturer’s pro-

tocol.Non-targeting siRNAwasusedasacontrol. Threedays after transfection,

4 million SUM159 cells, SUM159 cells transfected with non-targeting siRNA

control and siRNA against KDM6A and KDM6B, were fused with 4 million

MCF7 cells using the same protocol described previously.

DNA Content, STR Polymorphism, and SKY Analyses

Cells were harvested, washed in PBS, and fixed in ice-cold 70%ethanol at 4�C
overnight. Fixed cells were re-suspended in a solution containing 100 mg/ml

RNase and 40 mg/ml propidium iodide (Sigma) and incubated for 30 min

at 37�C with agitation. The DNA content of 10,000 cells was determined

with FACS Canto II (BD Biosciences). STR fingerprinting and SKY were per-

formed by the Molecular Genetics Laboratory (Dana-Farber Cancer Institute)

and DF/HCC Cytogenetics Core Facility, respectively, following standard

procedures.
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