121 research outputs found
The more things change ... the more things change: developmental plasticity of tumor-initiating mammary epithelial cells
In our haste to find and eliminate breast cancer stem cells, it appears as though we may have missed something. Contrary to current thought, a recent paper by Meyer and colleagues demonstrates developmental plasticity of breast cancer cells with respect to the CD24 cell surface marker, such that CD44pos; CD24pos and CD44pos; CD24low/- cells are able to give rise to one another in an activin/nodal-dependent manner, and that cells derived from single cells of either phenotype are capable of forming tumors as xenografts. If confirmed clinically, these data imply that simply targeting the CD44pos; CD24low/- breast cancer stem cell for breast cancer treatment may be destined to fail unless this plasticity is taken into account and prevented
Global profiling of histone and DNA methylation reveals epigenetic-based regulation of gene expression during epithelial to mesenchymal transition in prostate cells
<p>Abstract</p> <p>Background</p> <p>Previously we reported extensive gene expression reprogramming during epithelial to mesenchymal transition (EMT) of primary prostate cells. Here we investigated the hypothesis that specific histone and DNA methylations are involved in coordination of gene expression during EMT.</p> <p>Results</p> <p>Genome-wide profiling of histone methylations (H3K4me3 and H3K27me3) and DNA methylation (DNAMe) was applied to three cell lines at different stages of a stepwise prostate cell model involving EMT and subsequent accumulation of malignant features. Integrated analyses of epigenetic promoter modifications and gene expression changes revealed strong correlations between the dynamic changes of histone methylations and gene expression. DNA methylation was weaker associated with global gene repression, but strongly correlated to gene silencing when genes co-modified by H3K4me3 were excluded. For genes labeled with multiple epigenetic marks in their promoters, the level of transcription was associated with the net signal intensity of the activating mark H3K4me3 minus the repressive marks H3K27me3 or DNAMe, indicating that the effect on gene expression of bivalent marks (H3K4/K27me3 or H3K4me3/DNAMe) depends on relative modification intensities. Sets of genes, including epithelial cell junction and EMT associated fibroblast growth factor receptor genes, showed corresponding changes concerning epigenetic modifications and gene expression during EMT.</p> <p>Conclusions</p> <p>This work presents the first blueprint of epigenetic modifications in an epithelial cell line and the progeny that underwent EMT and shows that specific histone methylations are extensively involved in gene expression reprogramming during EMT and subsequent accumulation of malignant features. The observation that transcription activity of bivalently marked genes depends on the relative labeling intensity of individual marks provides a new view of quantitative regulation of epigenetic modification.</p
Expression Analysis of the Ligands for the Natural Killer Cell Receptors NKp30 and NKp44
BACKGROUND: The natural cytotoxicity receptors (NCR) are important to stimulate the activity of Natural Killer (NK) cells against transformed cells. Identification of NCR ligands and their level of expression on normal and neoplastic cells has important implications for the rational design of immunotherapy strategies for cancer. METHODOLOGY/PRINCIPAL FINDINGS: Here we analyze the expression of NKp30 ligand and NKp44 ligand on 30 transformed or non-transformed cell lines of different origin. We find intracellular and surface expression of these two ligands on almost all cell lines tested. Expression of NKp30 and NKp44 ligands was variable and did not correlate with the origin of the cell line. Expression of NKp30 and NKp44 ligand correlated with NKp30 and NKp44-mediated NK cell lysis of tumor cells, respectively. The surface expression of NKp30 ligand and NKp44 ligand was sensitive to trypsin treatment and was reduced in cells arrested in G(2)/M phase. CONCLUSION/SIGNIFICANCE: These data demonstrate the ubiquitous expression of the ligands for NKp30 and NKp44 and give an important insight into the regulation of these ligands
miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10
<p>Abstract</p> <p>Background</p> <p>miRNAs are a group of small RNA molecules regulating target genes by inducing mRNA degradation or translational repression. Aberrant expression of miRNAs correlates with various cancers. Although miR-135a has been implicated in several other cancers, its role in breast cancer is unknown. <it>HOXA10 </it>however, is associated with multiple cancer types and was recently shown to induce p53 expression in breast cancer cells and reduce their invasive ability. Because <it>HOXA10 </it>is a confirmed miR-135a target in more than one tissue, we examined miR-135a levels in relation to breast cancer phenotypes to determine if miR-135a plays role in this cancer type.</p> <p>Methods</p> <p>Expression levels of miR-135a in tissues and cells were determined by poly (A)-RT PCR. The effect of miR-135a on proliferation was evaluated by CCK8 assay, cell migration and invasion were evaluated by transwell migration and invasion assays, and target protein expression was determined by western blotting. GFP and luciferase reporter plasmids were constructed to confirm the action of miR-135a on downstream target genes including <it>HOXA10</it>. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student"s t-test.</p> <p>Results</p> <p>Here we report that miR-135a was highly expressed in metastatic breast tumors. We found that the expression of miR-135a was required for the migration and invasion of breast cancer cells, but not their proliferation. <it>HOXA10</it>, which encodes a transcription factor required for embryonic development and is a metastasis suppressor in breast cancer, was shown to be a direct target of miR-135a in breast cancer cells. Our analysis showed that miR-135a suppressed the expression of <it>HOXA10 </it>both at the mRNA and protein level, and its ability to promote cellular migration and invasion was partially reversed by overexpression of <it>HOXA10</it>.</p> <p>Conclusions</p> <p>In summary, our results indicate that miR-135a is an onco-miRNA that can promote breast cancer cell migration and invasion. <it>HOXA10 </it>is a target gene for miR-135a in breast cancer cells and overexpression of <it>HOXA10 </it>can partially reverse the miR-135a invasive phenotype.</p
Recommended from our members
Perturbed myoepithelial cell differentiation in BRCA mutation carriers and in ductal carcinoma in situ.
Myoepithelial cells play key roles in normal mammary gland development and in limiting pre-invasive to invasive breast tumor progression, yet their differentiation and perturbation in ductal carcinoma in situ (DCIS) are poorly understood. Here, we investigated myoepithelial cells in normal breast tissues of BRCA1 and BRCA2 germline mutation carriers and in non-carrier controls, and in sporadic DCIS. We found that in the normal breast of non-carriers, myoepithelial cells frequently co-express the p63 and TCF7 transcription factors and that p63 and TCF7 show overlapping chromatin peaks associated with differentiated myoepithelium-specific genes. In contrast, in normal breast tissues of BRCA1 mutation carriers the frequency of p63+TCF7+ myoepithelial cells is significantly decreased and p63 and TCF7 chromatin peaks do not overlap. These myoepithelial perturbations in normal breast tissues of BRCA1 germline mutation carriers may play a role in their higher risk of breast cancer. The fraction of p63+TCF7+ myoepithelial cells is also significantly decreased in DCIS, which may be associated with invasive progression
Epigenetic Regulation of Cell Type–Specific Expression Patterns in the Human Mammary Epithelium
Differentiation is an epigenetic program that involves the gradual loss of pluripotency and acquisition of cell type–specific features. Understanding these processes requires genome-wide analysis of epigenetic and gene expression profiles, which have been challenging in primary tissue samples due to limited numbers of cells available. Here we describe the application of high-throughput sequencing technology for profiling histone and DNA methylation, as well as gene expression patterns of normal human mammary progenitor-enriched and luminal lineage-committed cells. We observed significant differences in histone H3 lysine 27 tri-methylation (H3K27me3) enrichment and DNA methylation of genes expressed in a cell type–specific manner, suggesting their regulation by epigenetic mechanisms and a dynamic interplay between the two processes that together define developmental potential. The technologies we developed and the epigenetically regulated genes we identified will accelerate the characterization of primary cell epigenomes and the dissection of human mammary epithelial lineage-commitment and luminal differentiation
- …