423 research outputs found

    Diabetes Alters Contraction-Induced Mitogen Activated Protein Kinase Activation in the Rat Soleus and Plantaris

    Get PDF
    The prescription of anaerobic exercise has recently been advocated for the management of diabetes; however exercise-induced signaling in diabetic muscle remains largely unexplored. Evidence from exercise studies in nondiabetics suggests that the extracellular-signal-regulated kinases (Erk1/2), p38, and c-JUN NH2-terminal kinase (Jnk) mitogen-activated protein kinases (MAPKs) are important regulators of muscle adaptation. Here, we compare the basal and the in situ contraction-induced phosphorylation of Erk1/2- p38- and Jnk-MAPK and their downstream targets (p90rsk and MAPKAP-K2) in the plantaris and soleus muscles of normal and obese (fa/fa) Zucker rats. Compared to lean animals, the time course and magnitude of Erk1/2, p90rsk and p38 phosphorylation to a single bout of contractile stimuli were greater in the plantaris of obese animals. Jnk phosphorylation in response to contractile stimuli was muscle-type dependent with greater increases in the plantaris than the soleus. These results suggest that diabetes alters intramuscular signaling processes in response to a contractile stimulus

    A Guide to Handling Missing Data in Cost-Effectiveness Analysis Conducted Within Randomised Controlled Trials

    Get PDF
    The authors would like to thank Professor Adrian Grant and the team at the University of Aberdeen (Professor Craig Ramsay, Janice Cruden, Charles Boachie, Professor Marion Campbell and Seonaidh Cotton) who kindly allowed the REFLUX dataset to be used for this work, and Eldon Spackman for kindly sharing the Stata (R) code for calculating the probability that an intervention is cost effective following MI. The authors are grateful to the reviewers for their comments, which greatly improved this paper. M. G. is recipient of a Medical Research Council Early Career Fellowship in Economics of Health (grant number: MR/K02177X/1). I. R. W. was supported by the Medical Research Council [Unit Programme U105260558]. No specific funding was obtained to produce this paper. The authors declare no conflicts of interest.Missing data are a frequent problem in cost-effectiveness analysis (CEA) within a randomised controlled trial. Inappropriate methods to handle missing data can lead to misleading results and ultimately can affect the decision of whether an intervention is good value for money. This article provides practical guidance on how to handle missing data in within-trial CEAs following a principled approach: (i) the analysis should be based on a plausible assumption for the missing data mechanism, i.e. whether the probability that data are missing is independent of or dependent on the observed and/or unobserved values; (ii) the method chosen for the base-case should fit with the assumed mechanism; and (iii) sensitivity analysis should be conducted to explore to what extent the results change with the assumption made. This approach is implemented in three stages, which are described in detail: (1) descriptive analysis to inform the assumption on the missing data mechanism; (2) how to choose between alternative methods given their underlying assumptions; and (3) methods for sensitivity analysis. The case study illustrates how to apply this approach in practice, including software code. The article concludes with recommendations for practice and suggestions for future research.Medical Research Council Early Career Fellowship in Economics of Health MR/K02177X/1Medical Research Council UK (MRC) U105260558Medical Research Council UK (MRC) MC_U105260558 MR/K02177X/

    A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy

    Get PDF
    Simultaneous visualization and concentration quantification of molecules in biological tissue is an important though challenging goal. The advantages of fluorescence lifetime imaging microscopy (FLIM) for visualization, and electron paramagnetic resonance (EPR) spectroscopy for quantification are complementary. Their combination in a multiplexed approach promises a successful but ambitious strategy because of spin label-mediated fluorescence quenching. Here, we solved this problem and present the molecular design of a dual label (DL) compound comprising a highly fluorescent dye together with an EPR spin probe, which also renders the fluorescence lifetime to be concentration sensitive. The DL can easily be coupled to the biomolecule of choice, enabling in vivo and in vitro applications. This novel approach paves the way for elegant studies ranging from fundamental biological investigations to preclinical drug research, as shown in proof-of-principle penetration experiments in human skin ex vivo

    Propulsion in cubomedusae : mechanisms and utility

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e56393, doi:10.1371/journal.pone.0056393.Evolutionary constraints which limit the forces produced during bell contractions of medusae affect the overall medusan morphospace such that jet propulsion is limited to only small medusae. Cubomedusae, which often possess large prolate bells and are thought to swim via jet propulsion, appear to violate the theoretical constraints which determine the medusan morphospace. To examine propulsion by cubomedusae, we quantified size related changes in wake dynamics, bell shape, swimming and turning kinematics of two species of cubomedusae, Chironex fleckeri and Chiropsella bronzie. During growth, these cubomedusae transitioned from using jet propulsion at smaller sizes to a rowing-jetting hybrid mode of propulsion at larger sizes. Simple modifications in the flexibility and kinematics of their velarium appeared to be sufficient to alter their propulsive mode. Turning occurs during both bell contraction and expansion and is achieved by generating asymmetric vortex structures during both stages of the swimming cycle. Swimming characteristics were considered in conjunction with the unique foraging strategy used by cubomedusae.This work was supported by an ONR MURI award (N000140810654) and National Science Foundation grant OCE 0623508 to JHC, SPC, JOD. And the work was supported by the Roger Williams University Foundation to Promote Scholarship

    Responses of Tectal Neurons to Contrasting Stimuli: An Electrophysiological Study in the Barn Owl

    Get PDF
    The saliency of visual objects is based on the center to background contrast. Particularly objects differing in one feature from the background may be perceived as more salient. It is not clear to what extent this so called “pop-out” effect observed in humans and primates governs saliency perception in non-primates as well. In this study we searched for neural-correlates of pop-out perception in neurons located in the optic tectum of the barn owl. We measured the responses of tectal neurons to stimuli appearing within the visual receptive field, embedded in a large array of additional stimuli (the background). Responses were compared between contrasting and uniform conditions. In a contrasting condition the center was different from the background while in the uniform condition it was identical to the background. Most tectal neurons responded better to stimuli in the contrsating condition compared to the uniform condition when the contrast between center and background was the direction of motion but not when it was the orientation of a bar. Tectal neurons also preferred contrasting over uniform stimuli when the center was looming and the background receding but not when the center was receding and the background looming. Therefore, our results do not support the hypothesis that tectal neurons are sensitive to pop-out per-se. The specific sensitivity to the motion contrasting stimulus is consistent with the idea that object motion and not large field motion (e.g., self-induced motion) is coded in the neural responses of tectal neurons
    corecore