2,828 research outputs found

    Evidence for Partial Taylor Relaxation from Changes in Magnetic Geometry and Energy during a Solar Flare

    Full text link
    Solar flares are powered by energy stored in the coronal magnetic field, a portion of which is released when the field reconfigures into a lower energy state. Investigation of sunspot magnetic field topology during flare activity is useful to improve our understanding of flaring processes. Here we investigate the deviation of the non-linear field configuration from that of the linear and potential configurations, and study the free energy available leading up to and after a flare. The evolution of the magnetic field in NOAA region 10953 was examined using data from Hinode/SOT-SP, over a period of 12 hours leading up to and after a GOES B1.0 flare. Previous work on this region found pre- and post-flare changes in photospheric vector magnetic field parameters of flux elements outside the primary sunspot. 3D geometry was thus investigated using potential, linear force-free, and non-linear force-free field extrapolations in order to fully understand the evolution of the field lines. Traced field line geometrical and footpoint orientation differences show that the field does not completely relax to a fully potential or linear force-free state after the flare. Magnetic and free magnetic energies increase significantly ~ 6.5-2.5 hours before the flare by ~ 10^31 erg. After the flare, the non-linear force-free magnetic energy and free magnetic energies decrease but do not return to pre-flare 'quiet' values. The post-flare non-linear force-free field configuration is closer (but not equal) to that of the linear force-free field configuration than a potential one. However, the small degree of similarity suggests that partial Taylor relaxation has occurred over a time scale of ~ 3-4 hours.Comment: Accepted for Publication in Astronomy & Astrophysics. 11 pages, 11 figure

    Validating performance of automotive materials at high strain rate for improved crash design

    Get PDF
    This paper investigates sources of performance variability in high velocity testing of automotive crash structures. Sources of variability, or so called noise factors, present in a testing environment, arise from uncertainty in structural properties, joints, boundary conditions and measurement system. A box structure, which is representative of a crash component, is designed and fabricated from a high strength Dual Phase sheet steel. Crush tests are conducted at low and high speed. Such tests intend to validate a component model and material strain rate sensitivity data determined from high speed tensile testing. To support experimental investigations, stochastic modeling is used to investigate the effect of noise factors on crash structure performance variability, and to identify suitable performance measures to validate a component model and material strain rate sensitivity data. The results of the project will enable the measurement of more reliable strain rate sensitivity data for improved crashworthiness predictions of automotive structures

    Performance of Major Flare Watches from the Max Millennium Program (2001-2010)

    Get PDF
    The physical processes that trigger solar flares are not well understood and significant debate remains around processes governing particle acceleration, energy partition, and particle and energy transport. Observations at high resolution in energy, time, and space are required in multiple energy ranges over the whole course of many flares in order to build an understanding of these processes. Obtaining high-quality, co-temporal data from ground- and space- based instruments is crucial to achieving this goal and was the primary motivation for starting the Max Millennium program and Major Flare Watch (MFW) alerts, aimed at coordinating observations of all flares >X1 GOES X-ray classification (including those partially occulted by the limb). We present a review of the performance of MFWs from 1 February 2001 to 31 May 2010, inclusive, that finds: (1) 220 MFWs were issued in 3,407 days considered (6.5% duty cycle), with these occurring in 32 uninterrupted periods that typically last 2-8 days; (2) 56% of flares >X1 were caught, occurring in 19% of MFW days; (3) MFW periods ended at suitable times, but substantial gain could have been achieved in percentage of flares caught if periods had started 24 h earlier; (4) MFWs successfully forecast X-class flares with a true skill statistic (TSS) verification metric score of 0.500, that is comparable to a categorical flare/no-flare interpretation of the NOAA Space Weather Prediction Centre probabilistic forecasts (TSS = 0.488).Comment: 19 pages, 2 figures, accepted for publication in Solar Physic
    • …
    corecore