
Littlewood, B., Bloomfield, R. E., Popov, P. T., Povyakalo, A. A. & Strigini, L. (2004). The impact of

"difficulty" variation on the probability of coincident failure of diverse systems. Paper presented at the

International Conference on Control and Instrumentation in Nuclear Installations, 2004, Liverpool,

UK.

City Research Online

Original citation: Littlewood, B., Bloomfield, R. E., Popov, P. T., Povyakalo, A. A. & Strigini, L.

(2004). The impact of "difficulty" variation on the probability of coincident failure of diverse systems.

Paper presented at the International Conference on Control and Instrumentation in Nuclear

Installations, 2004, Liverpool, UK.

Permanent City Research Online URL: http://openaccess.city.ac.uk/1600/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/9559384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

The impact of ‘difficulty’ variation on
the probability of coincident failure of

diverse systems

Peter Bishop, Robin Bloomfield, Bev Littlewood, Peter Popov, Andrey

Povyakalo, Lorenzo Strigini

Adelard and Centre for Software Reliability, City University

Abstract
Redundancy and diversity have long been used as means to obtain high reliability in
critical systems. Whilst it is easy to claim that, say, a 1-out-of-2 diverse system will
be more reliable than each of the two channels, assessing the actual reliability of
such systems can be difficult. Some years ago, new probability models were
developed to address this problem in the case of diverse software systems. They
depend upon a notion of variation of ‘difficulty’ – more precisely ‘propensity to fail’
– across the input space. These models show that independence of failures will occur
only in very special circumstances, and so such independence cannot simply be
assumed. They were later shown to apply to certain kinds of hardware systems. If we
cannot claim independence of channel failures, the computation of system reliability
is difficult, because complete knowledge of the difficulty function is needed. This is
unlikely to be available for software. Instead, we are unlikely to know more than the
marginal pfd (probability of failure on demand) of the software. In this paper we
consider the case of a 1-out-of-2 system in which one channel contains software, and
the other channel contains only hardware equipment. We show that a useful upper
(i.e. conservative) bound can be obtained for the system pfd using only the
unconditional pfd for software (together with information about the variation of
hardware ‘difficulty’, which is likely to be known or estimatable).

Impact of difficulty variation on coincident failure probability 2

1 Introduction

In earlier work (Eckhardt and Lee 1985; Hughes 1987; Littlewood and Miller 1989)
the idea of difficulty variation has been introduced as an explanation for dependence
in failure behaviour between diverse system components to be used in a fault tolerant
system (e.g. a 1-out-of-2 system). The idea is a simple one. The ‘difficulty’ of a
demand can be thought of intuitively as its propensity to induce failure in the system
that has to handle it (more formally it is the probability of that system failing on the
demand). If this difficulty varies across demands for each of the component sub-
systems of a 1-out-of-2 system, interest centres upon the association between the two
difficulty functions. When there is positive association here – roughly, what is very
difficult for one version also tends to be very difficult for the other – then it is more
likely that there will be positive association between their failures. In such a case,
wrongly assuming independence of failures between the two versions will give an
optimistic estimate of the reliability of the 1-out-of-2 system1.

A conceptual achievement of these models is their establishment of, and explanation
for, the inevitability of dependence of failure behaviour between versions. No longer
is it possible to claim that the two diverse component systems of a 1-out-of-2 fault
tolerant architecture will fail independently of one another, without making very
strong claims: essentially that there is no variation of ‘difficulty’ for at least one of the
channels. This means that the simple arithmetic of independence is not applicable for
the computation of the system reliability as a function of the component reliabilities.
Informally, it means that we need to know how dependent the version failures will be.

The problem of estimating the reliability of such a 1-out-of-2 system is thus hard. It
seems to require a complete knowledge of the two difficulty functions. Whilst it
seems feasible to obtain reasonable approximations of difficulty functions for
hardware systems, for software things seem much more problematic. In fact, we are
likely to know – or be able to estimate – the marginal probability of failure on
demand of the software, but not know how the pfd varies across demands, or demand
classes. In this paper we consider, for simplicity, a 1-out-of-2 system in which there is
software in one channel only. We show how to obtain a pessimistic (but attainable)
bound for the probability of failure on demand for such a system, which requires only
the marginal pfd of the software to be known (together with the varying hardware
pfds across different demand classes). The basic ideas here can be generalised to more
complex systems than the example we use in the paper.

2 Statement of problem

The example we shall use for illustration throughout the paper is a nuclear reactor
protection system with two channels: the X-train and Y-train.

1 It is possible to do better than independence if there is negative correlation between the

difficulty functions.

Impact of difficulty variation on coincident failure probability 3

Consider first the simple situation in which each channel is built of hardware alone, as
in Fig 1. We shall assume that demands are of several different types. A demand of
one type will typically have a different probability of failure from a demand of
another type. In the case study that prompted this work, a demand type could be
characterised by the equipment that was needed to function correctly for the demand
to be successfully met. Some demand types, for example, required more such
equipment than others, and thus might be considered in our informal terminology
more ‘difficult’ – i.e. the chance of failure would be greater. Within a demand class,
although demands are of the same type they will differ from one another in some
respects: for example, the reactor state will be different, represented by the readings
of sensors for temperature, pressure, etc. Nevertheless, all demands within a demand
class have the same pfd. In the event that all demands of this type require exactly the
same equipment to function without failure, this assumption may be reasonable.

X-train h/w

Y-train h/w

Figure 1

With these assumptions, we can see that the (marginal) probability of failure on
demand of the 1-out-of-2 system, i.e. for a randomly chosen demand, is the
probability of both X-train hardware and Y-train hardware failure:

€

pfdXhYh
= phi

X

i
∑ phi

Y f i (1)

where phi
X is the probability of X-train hardware failure on demand type i, phi

Y is the
probability of Y-train hardware failure on demand type i, and f i is probability that a
randomly chosen demand is of type i.

Clearly, the pfd is different from the result that would be obtained under an incorrect
assumption of independence of failure between the two channels, which is

€

pfdXh
.pfdYh = phi

X

i
∑ fi

$
%

&

'
(phi

Y f i
i
∑

$
%

&

'
(

The true result will exceed the incorrect result (based on the false independence
assumption) so long as there is positive covariance between the X- and Y-train
demand type pfds, phi

X and phi
Y . This is similar to the result of Eckhardt and Lee

(Eckhardt and Lee 1985) for software diversity. The positive covariance means that
there is a tendency for large demand type pfds in the X-train to be associated with
large demand type pfds in the Y-train: informally, if we see the X-train fail, we note

Impact of difficulty variation on coincident failure probability 4

that the demand type was probably one with a large pfd, and that the Y-train pfd is
also thus probably large, and therefore its probability of failure is greater than it
would be unconditionally.

Note the assumption of conditional independence in (1), i.e. for a given demand type,
failure of X-train hardware is independent of failure of Y-train hardware. This is
reasonable if it can be assumed that there is constancy of pfd within a demand type
for either train. Alternatively, if the pfd for a demand class in such expressions is an
upper bound on the true pfd (varying over demands within the demand class), then we
shall have a conservative bound from this expression.

The important point here is that for each demand type in the sum here, every demand
within that class requires exactly the same minimal set of functioning hardware to
satisfy the demand.2

We now consider the situation which is the subject of this paper, in which one
channel has software: see Fig 2.

X-train h/w

Y-train h/w

X-train s/w

Figure 2

The probability of failure on demand is now:

€

pfdXh+sYh
= phi

X + psi
X − phi,si

X()
i
∑ phi

Y f i (2)

where psi
X is the probability of failure of the X-train software on a demand of type i,

and

€

phi,si
X is the probability of simultaneous hardware and software failure on a

demand of type i.

The practical difficulty we face now is that neither psi
X nor

€

phi,si
X are likely to be

known or estimatable. We can proceed conservatively by ignoring the probability of
joint hardware/software failures, since

2 There is a slight problem here if the demand types for channel X and those for channel Y do
not exactly coincide. A demand type in the sum (1) can be defined as a set of demands that have the
same X-train probability of failure for all the demands in the set, and the same Y-train probability of
failure for all demands in the set. This will generally involve more demand types for the system than
there are for each channel alone.

Impact of difficulty variation on coincident failure probability 5

€

pfdXh+sYh
≤ phi

X + psi
X()

i
∑ phi

Y f i

€

= pfdXhYh
+ psi

X phi
Y f i

i
∑ (3)

The second term here can be thought of as the maximum error (underestimation) there
could be in the probability of system pfd if we ignored the effect of software failures.
Whilst it is unlikely that the effect of software failures on system pfd will be ignored
completely in this way, it is more likely that variation of the software pfd across
demands will be ignored, since this variation will be unknown.

If we were to assume that there is no variation in software pfd, we have in an obvious
notation:

psi
X ≡ pfdXs

which, when substituted into (3), gives

€

pfdXh+sYh
≤ pfdXhYh

+ psi
X phi

Y f i
i
∑ = pfdXhYh

+ pfdXs
.pfdYh (4)

The maximum error that arises from ignoring software pfd variation is thus the
difference between (3) and (4):

psi
X phi

Y fi
i
∑ − pfdXs

.pfdYh (5)

Notice that this is zero if there is no variation in the Y-train hardware pfd: in this case
the X-train software and the Y-train hardware fail independently. The error arising
from incorrectly assuming the X-train software pfd does not vary is completely
masked by the fact of there being no variation in the Y-train. This result was first
noted in (Littlewood and Miller 1989): in general, if there is no difficulty variation in
one channel, then the two channels fail independently, regardless of what happens in
the other channel.

In the next section we show how to compute the worst value (5) can take.

3 Worst case error from ignoring software pfd variation

We need to find the worst case value of the first term in (5) for a given value of the
marginal software pfd,

€

pfdXs
= psi

X f i
i
∑ . In other words, we need to find which

allocation of

€

pfdXs
 among the different demand classes maximizes

€

psi
X phi

Y fi
i
∑ .

Now

psi
X phi

Y fi
i
∑ = Cov psi

X, phi
Y() + E psi

X()E phi
Y()

Impact of difficulty variation on coincident failure probability 6

where E psi
X() is simply the marginal probability on demand of the software,

pfdXs
= psi

X f i
i
∑ , and E phi

Y() is the marginal probability of failure on demand of the

Y-channel hardware, pfdYh = phi
Y

i
∑ fi . If we keep these two probabilities constant, the

maximum underestimate of

€

psi
X phi

Y fi
i
∑ occurs when Cov psi

X , phi
Y() takes its maximum

value. It is easy to see that this occurs when we associate large values

€

psi
X with large

values of

€

phi
Y .

Informally, then, we proceed by allocating as much of

€

pfdXs
 as we can to the demand

class that has maximum Y-channel hardware pfd; we allocate as much of the
remaining

€

pfdXs
 to the demand class with the next largest Y-channel hardware pfd,

and so on until we have ‘used up’ all of

€

pfdXs
.

Rather more precisely the procedure to find the worst case error in ignoring software
pfd variation, (5), is as follows:

Denote by

€

i* the demand class that has maximum Y-train hardware pfd, i.e.

phi*
Y =max phi

Y{ } .

If

pfdXs ≤ fi* (6)

then the maximum possible value of

€

psi
X phi

Y fi
i
∑ occurs when

€

psi*
X =

pfdXs

fi*
; psi

X = 0 for all other values of i (7)

and the maximum value of

€

psi
X phi

Y fi
i
∑ is then

pfdXs .phi*
Y . (8)

In the event that the software pfd is too large, and (6) is violated, the result
extends in an obvious way: as much as possible of the software pfd is assigned
to the demand type with the largest Y-train hardware pfd, as here; as much as
possible of the remaining software pfd is assigned to the demand type with the
next largest Y-train hardware pfd; and so on until all the software pfd ‘has
been used up’.

We call this procedure ‘bin-filling’ as the demand ‘bins’ with the highest Y-train
hardware failure probability are assigned a maximum software pfd (‘filled up’) until
we run out of available software pfd.

Impact of difficulty variation on coincident failure probability 7

The worst case error in estimation of system pfd from ignoring variation in software
X-channel pfd is thus the value of the expression (5) using the maximum value of

€

psi
X phi

Y fi
i
∑ computed as above.

A proof of this result is too long for the present paper but can be found at the
following URL:

http://www.csr.city.ac.uk/people/andrey.povyakalo/BL_DISPO2_01_AppendixA.pdf

4 Discussion

The work by Eckhardt and Lee (and later work) introduced a new way of looking at
the reasons for dependence between the failure behaviour of diverse versions. In these
models, everything turns on what we have called ‘difficulty variation’ over demands.
This earlier work gave novel insights into the reasons why claims for independence
are rarely supportable. Unfortunately, it also introduced some serious difficulties for
anyone wishing to exploit the models to estimate the actual probabilities of failure of
real systems, since this requires estimation of these ‘difficulty functions’.

In this paper we have looked at a particular system: a 1-out-of-2 system in which only
one channel contains software. In the example that motivated this work – a protection
system for a nuclear reactor – we were able to identify a small number of demand
types (<20) for each of which a hardware pfd could be estimated. In fact these had
been estimated as part of the wider safety case for the reactor. For software, on the
other hand, only a marginal pfd could be estimated. Our aim, therefore, was to obtain
a bound on the error in the estimate of the system pfd in the event that the variation of
software pfd across demands were to be ignored – essentially by making the false
assumption that the marginal software pfd applied equally to every demand class. Our
main result here is such a bound, but it may not be the tightest available – essentially
because of conservatively ignoring the probability of simultaneous hardware and
software failures in expression (3): we hope to present tighter bounds in future work.

As we have found elsewhere whilst working on these models of diversity, these
results are quite surprising and subtle: witness, for example, the pivotal role played by
variation in Y-train hardware pfd when we take into account X-train software
failures. We do not think that these results could have been obtained without the
formal model of diversity, although we believe that they are intuitively plausible in
retrospect.

Of course, if a conservative value of the software pfd were to be used over all demand
classes (i.e. one that is not exceeded by the true pfd of any demand class), then the
calculated system pfd would be conservative. In fact, it may be very conservative: our
result points to a way of lessening this conservatism.

A small word of warning is appropriate at this stage. The results in Section 3 all
depend upon some assumptions of conditional independence of failures: for example,
independence between failures of the X-train (hardware and software), on the one
hand, and the Y-train (hardware only) on the other, for each demand type i.

Impact of difficulty variation on coincident failure probability 8

Essentially, this amounts to assuming an equivalence, or indifference, between
demands that make up a demand type, i.e. assuming there is no pfd variation within a
demand type (there is only variation between demand types and between the trains’
hardware and the software). If these assumptions are not correct, the worst case errors
given above will be too optimistic.3

Acknowledgements

This work was partially supported by the DISPO-2 (DIverse Software PrOject)
Project, funded by British Energy Generation Ltd and BNFL Magnox Generation
under the IMC (Industry Management Committee) Nuclear Research Programme
under Contract No. PP/40030532, and by the project DIRC (‘Interdisciplinary
Research Collaboration in Dependability of Computer-Based Systems’) funded by
UK Engineering and Physical Sciences Research Council (EPSRC).

References

Eckhardt, D. E. and L. D. Lee (1985). "A Theoretical Basis of Multiversion Software
Subject to Coincident Errors." IEEE Trans. on Software Engineering 11:
1511-1517.

Hughes, R. P. (1987). "A new approach to common cause failure." Reliability
Engineering 17: 211-236.

Littlewood, B. and D. R. Miller (1989). "Conceptual Modelling of Coincident
Failures in Multi-Version Software." IEEE Trans on Software Engineering
15(12): 1596-1614.

3 This observation is equally true of calculations of system reliability when only hardware

failures are considered, as in (1). However, this should not be of serious concern for two reasons. In the
first place, it may be more plausible for there to be little or no variation of pfd for hardware within a
demand type, compared with software. Secondly, the usual conservatism in the estimation of the
individual demand type pfds may overcome the difficulty: if the common assumed value for each
particular demand type is greater than the largest true pfd among the individual demands within that
type, then conservatism is guaranteed in the overall calculation.

