314 research outputs found

    Exploring gravitational theories beyond Horndeski

    Get PDF
    We have recently proposed a new class of gravitational scalar-tensor theories free from Ostrogradski instabilities, in arXiv:1404.6495. As they generalize Horndeski theories, or "generalized" galileons, we call them G3^3. These theories possess a simple formulation when the time hypersurfaces are chosen to coincide with the uniform scalar field hypersurfaces. We confirm that they contain only three propagating degrees of freedom by presenting the details of the Hamiltonian formulation. We examine the coupling between these theories and matter. Moreover, we investigate how they transform under a disformal redefinition of the metric. Remarkably, these theories are preserved by disformal transformations that depend on the scalar field gradient, which also allow to map subfamilies of G3^3 into Horndeski theories.Comment: 33 pages, added comments and corrected typos as in JCAP versio

    Neurofibromin controls macropinocytosis and phagocytosis in Dictyostelium

    Get PDF
    Cells use phagocytosis and macropinocytosis to internalise bulk material, which in phagotrophic organisms supplies the nutrients necessary for growth. Wildtype Dictyostelium amoebae feed on bacteria, but for decades laboratory work has relied on axenic mutants that can also grow on liquid media. We used forward genetics to identify the causative gene underlying this phenotype. This gene encodes the RasGAP Neurofibromin (NF1). Loss of NF1 enables axenic growth by increasing fluid uptake. Mutants form outsized macropinosomes which are promoted by greater Ras and PI3K activity at sites of endocytosis. Relatedly, NF1 mutants can ingest larger-than-normal particles using phagocytosis. An NF1 reporter is recruited to nascent macropinosomes, suggesting that NF1 limits their size by locally inhibiting Ras signalling. Our results link NF1 with macropinocytosis and phagocytosis for the first time, and we propose that NF1 evolved in early phagotrophs to spatially modulate Ras activity, thereby constraining and shaping their feeding structures. DOI: http://dx.doi.org/10.7554/eLife.04940.00

    Cosmology in a String-Dominated Universe

    Get PDF
    The string-dominated universe locally resembles an open universe, and fits dynamical measures of power spectra, cluster abundances, redshift distortions, lensing constraints, luminosity and angular diameter distance relations and microwave background observations. We show examples of networks which might give rise to recent string-domination without requiring any fine-tuned parameters. We discuss how future observations can distinguish this model from other cosmologies.Comment: 17 pages including 4 figures, of which one is in colo

    Nonparametric directionality measures for time series and point process data

    Get PDF
    The need to determine the directionality of interactions between neural signals is a key requirement for analysis of multichannel recordings. Approaches most commonly used are parametric, typically relying on autoregressive models. A number of concerns have been expressed regarding parametric approaches, thus there is a need to consider alternatives. We present an alternative nonparametric approach for construction of directionality measures for bivariate random processes. The method combines time and frequency domain representations of bivariate data to decompose the correlation by direction. Our framework generates two sets of complementary measures, a set of scalar measures, which decompose the total product moment correlation coefficient summatively into three terms by direction and a set of functions which decompose the coherence summatively at each frequency into three terms by direction: forward direction, reverse direction and instantaneous interaction. It can be undertaken as an addition to a standard bivariate spectral and coherence analysis, and applied to either time series or point-process (spike train) data or mixtures of the two (hybrid data). In this paper, we demonstrate application to spike train data using simulated cortical neurone networks and application to experimental data from isolated muscle spindle sensory endings subject to random efferent stimulation

    The Groundwater Drought Initiative (GDI): analysing and understanding groundwater drought across Europe

    Get PDF
    In Europe, it is estimated that around 65 % of drinking water is extracted from groundwater. Worryingly, groundwater drought events (defined as below normal groundwater levels) pose a threat to water security. Groundwater droughts are caused by seasonal to multi-seasonal or even multi-annual episodes of meteorological drought during which the drought propagates through the river catchment into the groundwater system by mechanisms of pooling, lagging, and lengthening of the drought signals. Recent European drought events in 2010–2012, 2015 and 2017–2018 exhibited spatial coherence across large areas, thus demonstrating the need for transboundary monitoring and analysis of groundwater level fluctuations. However, such monitoring and analysis of groundwater drought at a pan-European scale is currently lacking, and so represents a gap in drought research as well as in water management capability. To address this gap, the European Groundwater Drought Initiative (GDI), a pan-European collaboration, is undertaking a large-scale data synthesis of European groundwater level data. This is being facilitated by the establishment of a new network to co-ordinate groundwater drought research across Europe. This research will deliver the first assessment of spatio-temporal changes in groundwater drought status from ∼1960 to present, and a series of case studies on groundwater drought impacts in selected temperate and semi-arid environments across Europe. Here, we describe the methods used to undertake the continental-scale status assessment, which are more widely applicable to transboundary or large-scale groundwater level analyses also in regions beyond Europe, thereby enhancing groundwater management decisions and securing water supply

    Understanding the physical nature of coronal "EIT waves"

    Get PDF
    For almost 20 years the physical nature of globally propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed over the years to explain observations that did not fit with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory with the fast-mode wave interpretation was challenged by differing viewpoints from the twin Solar Terrestrial Relations Observatory spacecraft and higher spatial/temporal resolution data from the Solar Dynamics Observatory. In this article, we reexamine the theories proposed to explain "EIT waves" to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that "EIT waves" are best described as fast-mode large-amplitude waves/shocks that are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona

    Understanding the physical nature of coronal "EIT waves"

    Get PDF
    For almost 20 years the physical nature of globally propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed over the years to explain observations that did not fit with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory with the fast-mode wave interpretation was challenged by differing viewpoints from the twin Solar Terrestrial Relations Observatory spacecraft and higher spatial/temporal resolution data from the Solar Dynamics Observatory. In this article, we reexamine the theories proposed to explain "EIT waves" to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that "EIT waves" are best described as fast-mode large-amplitude waves/shocks that are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona
    • …
    corecore