132 research outputs found

    Campylobacter fetus Subspecies Contain Conserved Type IV Secretion Systems on Multiple Genomic Islands and Plasmids

    Get PDF
    Acknowledgments We like to thank Dr. John Devenish and Dr. Brian Brooks (Canadian Food Inspection Agency) for providing strains. We thank Nathaniel Simon and Mary Chapman for the generation of Illumina MiSeq reads and we thank James Bono for the generation of PacBio RS reads. Funding: The authors have no support or funding to report.Peer reviewedPublisher PD

    Comparative Genomics of Campylobacter fetus from Reptiles and Mammals Reveals Divergent Evolution in Host-Associated Lineages

    Get PDF
    Acknowledgments The authors like to thank Brian Brooks and John Devenish (Canadian Food Inspection Agency) for providing strains and valuable suggestions.Peer reviewedPublisher PD

    Development of Kaptive databases for Vibrio parahaemolyticus O- and K-antigen genotyping.

    Get PDF
    Vibrio parahaemolyticus is an important food-borne human pathogen and presents immunogenic surface polysaccharides, which can be used to distinguish problematic and disease-causing lineages. V. parahaemolyticus is divided in 16 O-serotypes (O-antigen) and 71 K-serotypes (K-antigen). Agglutination tests are still the gold standard for serotyping, but many V. parahaemolyticus isolates are not typable by agglutination. An alternative for agglutination tests is genotyping using whole-genome sequencing data, by which K- and O- genotypes have been curated and identified previously for other clinically relevant organisms with the software tool Kaptive. In this study, V. parahaemolyticus isolates were serotyped and sequenced, and all known and several novel O- and K-loci were identified. We developed Kaptive databases for all O- and K-loci after manual curation of the loci. In our study, we could genotype the O- and K-loci of 98 and 93 % of the genomes, respectively, with a Kaptive confidence score higher than 'none'. The newly developed Kaptive databases with the identified V. parahaemolyticus O- and K-loci can be used to identify the O- and K-genotypes of V. parahaemolyticus isolates from genome sequences

    Genomic Investigation of Two Acinetobacter baumannii Outbreaks in a Veterinary Intensive Care Unit in The Netherlands

    Get PDF
    Acinetobacter baumannii is a nosocomial pathogen that frequently causes healthcare-acquired infections. The global spread of multidrug-resistant (MDR) strains with its ability to survive in the environment for extended periods imposes a pressing public health threat. Two MDR A. baumannii outbreaks occurred in 2012 and 2014 in a companion animal intensive care unit (caICU) in the Netherlands. Whole-genome sequencing (WGS) was performed on dog clinical isolates (n = 6), environmental isolates (n = 5), and human reference strains (n = 3) to investigate if the isolates of the two outbreaks were related. All clinical isolates shared identical resistance phenotypes displaying multidrug resistance. Multi-locus Sequence Typing (MLST) revealed that all clinical isolates belonged to sequence type ST2. The core genome MLST (cgMLST) results confirmed that the isolates of the two outbreaks were not related. Comparative genome analysis showed that the outbreak isolates contained different gene contents, including mobile genetic elements associated with antimicrobial resistance genes (ARGs). The time-measured phylogenetic reconstruction revealed that the outbreak isolates diverged approximately 30 years before 2014. Our study shows the importance of WGS analyses combined with molecular clock investigations to reduce transmission of MDR A. baumannii infections in companion animal clinics

    № 46. Із щотижневого зведення Секретного відділу ДПУ УСРР № 46/56 за час з 13 до 19 листопада 1927 р.

    Get PDF
    Classifications of the Campylobacter fetus subspecies fetus and venerealis were first described in 1959 and were based on the source of isolation (intestinal versus genital) and the ability of the strains to proliferate in the genital tract of cows. Two phenotypic assays (1% glycine tolerance and H2S production) were described to differentiate the subspecies. Multiple molecular assays have been applied to differentiate the C. fetus subspecies, but none of these tests is consistent with the phenotypic identification methods. In this study, we defined the core genome and accessory genes of C. fetus, which are based on the closed genomes of five C. fetus strains. Phylogenetic analysis of the core genomes of 23 C. fetus strains of the two subspecies showed a division into two clusters. The phylogenetic core genome clusters were not consistent with the phenotypic classifications of the C. fetus subspecies. However, they were consistent with the molecular characteristics of the strains, which were determined by multilocus sequence typing, sap typing, and the presence/absence of insertion sequences and a type I restriction modification system. The similarity of the genome characteristics of three of the phenotypically defined C. fetus subsp. fetus strains to C. fetus subsp. venerealis strains, when considering the core genome and accessory genes, requires a critical evaluation of the clinical relevance of C. fetus subspecies identification by phenotypic assays

    Грецькі купці брати Зосимаді та “Еллінська бібліотека” (1804-1815)

    Get PDF
    Phenotypic differentiation between Campylobacter fetus (C. fetus) subspecies fetus and C. fetus subspecies venerealis is hampered by poor reliability and reproducibility of biochemical assays. AFLP (amplified fragment length polymorphism) and MLST (multilocus sequence typing) are the molecular standards for C. fetus subspecies identification, but these methods are laborious and expensive. Several PCR assays for C. fetus subspecies identification have been described, but a reliable comparison of these assays is lacking. The aim of this study was to evaluate the most practical and routinely implementable published PCR assays designed for C. fetus species and subspecies identification. The sensitivity and specificity of the assays were calculated by using an extensively characterized and diverse collection of C. fetus strains. AFLP and MLST identification were used as reference. Two PCR assays were able to identify C. fetus strains correctly at species level. The C. fetus species identification target, gene nahE, of one PCR assay was used to develop a real-time PCR assay with 100% sensitivity and 100% specificity, but the development of a subspecies venerealis specific real-time PCR (ISCfe1) failed due to sequence variation of the target insertion sequence and prevalence in other Campylobacter species. None of the published PCR assays was able to identify C. fetus strains correctly at subspecies level. Molecular analysis by AFLP or MLST is still recommended to identify C. fetus isolates at subspecies level
    corecore