1,611 research outputs found
High-Temperature Hall Effect in Ga(1-x)Mn(x)As
The temperature dependence of the Hall coefficient of a series of
ferromagnetic Ga(1-x)Mn(x)As samples is measured in the temperature range 80K <
T < 500K. We model the Hall coefficient assuming a magnetic susceptibility
given by the Curie-Weiss law, a spontaneous Hall coefficient proportional to
rho_xx^2(T), and including a constant diamagnetic contribution in the
susceptibility. For all low resistivity samples this model provides excellent
fits to the measured data up to T=380K and allows extraction of the hole
concentration (p). The calculated p are compared to alternative methods of
determining hole densities in these materials: pulsed high magnetic field (up
to 55 Tesla) technique at low temperatures (less than the Curie temperature),
and electrochemical capacitance- voltage profiling. We find that the Anomalous
Hall Effect (AHE) contribution to rho_xy is substantial even well above the
Curie temperature. Measurements of the Hall effect in this temperature regime
can be used as a testing ground for theoretical descriptions of transport in
these materials. We find that our data are consistent with recently published
theories of the AHE, but they are inconsistent with theoretical models
previously used to describe the AHE in conventional magnetic materials.Comment: 6 pages, 5 figures, 1 table. Accepted to Phys.Rev.
Curvature-coupling dependence of membrane protein diffusion coefficients
We consider the lateral diffusion of a protein interacting with the curvature
of the membrane. The interaction energy is minimized if the particle is at a
membrane position with a certain curvature that agrees with the spontaneous
curvature of the particle. We employ stochastic simulations that take into
account both the thermal fluctuations of the membrane and the diffusive
behavior of the particle. In this study we neglect the influence of the
particle on the membrane dynamics, thus the membrane dynamics agrees with that
of a freely fluctuating membrane. Overall, we find that this curvature-coupling
substantially enhances the diffusion coefficient. We compare the ratio of the
projected or measured diffusion coefficient and the free intramembrane
diffusion coefficient, which is a parameter of the simulations, with analytical
results that rely on several approximations. We find that the simulations
always lead to a somewhat smaller diffusion coefficient than our analytical
approach. A detailed study of the correlations of the forces acting on the
particle indicates that the diffusing inclusion tries to follow favorable
positions on the membrane, such that forces along the trajectory are on average
smaller than they would be for random particle positions.Comment: 16 pages, 8 figure
Individual quality assessment of autografting by probability estimation for clinical endpoints: a prospective validation study from the European group for blood and marrow transplantation.
The aim of supportive autografting is to reduce the side effects from stem cell transplantation and avoid procedure-related health disadvantages for patients at the lowest possible cost and resource expenditure. Economic evaluation of health care is becoming increasingly important. We report clinical and laboratory data collected from 397 consecutive adult patients (173 non-Hodgkin lymphoma, 30 Hodgkin lymphoma, 160 multiple myeloma, 7 autoimmune diseases, and 28 acute leukemia) who underwent their first autologous peripheral blood stem cell transplantation (PBSCT). We considered primary endpoints evaluating health economic efficacy (eg, antibiotic administration, transfusion of blood components, and time in hospital), secondary endpoints evaluating toxicity (in accordance with Common Toxicity Criteria), and tertiary endpoints evaluating safety (ie, the risk of regimen-related death or disease progression within the first year after PBSCT). A time-dependent grading of efficacy is proposed with day 21 for multiple myeloma and day 25 for the other disease categories (depending on the length of the conditioning regimen) as the acceptable maximum time in hospital, which together with antibiotics, antifungal, or transfusion therapy delineates four groups: favorable (≤7 days on antibiotics and no transfusions; ≤21 [25] days in hospital), intermediate (from 7 to 10 days on antibiotics and 7 days on antibiotics, >3 but 30/34 days in hospital after transplantation), and very unfavorable (>10 days on antibiotics, >6 transfusions; >30 to 34 days in hospital). The multivariate analysis showed that (1) PBSC harvests of ≥4 × 106/kg CD34 + cells in 1 apheresis procedure were associated with a favorable outcome in all patient categories except acute myelogenous leukemia and acute lymphoblastic leukemia (P = .001), (2) ≥5 × 106/kg CD34 + cells infused predicted better transplantation outcome in all patient categories (P 500 mL) (P = .002), and (5) patients with a central venous catheter during both collection and infusion of PBSC had a more favorable outcome post-PBSCT than peripheral access (P = .007). The type of mobilization regimen did not affect the outcome of auto-PBSCT. The present study identified predictive variables, which may be useful in future individual pretransplantation probability evaluations with the goal to improve supportive care
The gray matter volume of the amygdala is correlated with the perception of melodic intervals: a voxel-based morphometry study
Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses
Low utilization of health care services following screening for hypertension in Dar es Salaam (Tanzania): a prospective population-based study
Drug therapy in high-risk individuals has been advocated as an important strategy to reduce cardiovascular disease in low income countries. We determined, in a low-income urban population, the proportion of persons who utilized health services after having been diagnosed as hypertensive and advised to seek health care for further hypertension management. A population-based survey of 9254 persons aged 25-64 years was conducted in Dar es Salaam. Among the 540 persons with high blood pressure (defined here as BP >or= 160/95 mmHg) at the initial contact, 253 (47%) had high BP on a 4th visit 45 days later. Among them, 208 were untreated and advised to attend health care in a health center of their choice for further management of their hypertension. One year later, 161 were seen again and asked about their use of health services during the interval. Among the 161 hypertensive persons advised to seek health care, 34% reported to have attended a formal health care provider during the 12-month interval (63% public facility; 30% private; 7% both). Antihypertensive treatment was taken by 34% at some point of time (suggesting poor uptake of health services) and 3% at the end of the 12-month follow-up (suggesting poor long-term compliance). Health services utilization tended to be associated with older age, previous history of high BP, being overweight and non-smoking, but not with education or wealth. Lack of symptoms and cost of treatment were the reasons reported most often for not attending health care. Low utilization of health services after hypertension screening suggests a small impact of a patient-centered screen-and-treat strategy in this low-income population. These findings emphasize the need to identify and address barriers to health care utilization for non-communicable diseases in this setting and, indirectly, the importance of public health measures for primary prevention of these diseases
Origin of Low-Frequency Negative Transconductance Dispersion in p-HEMT
Measurements of low-frequency transconductance dispersion at different
temperatures and conductance deep level transient spectroscopic(CDLTS) studies
of an AlGaAs/InGaAs pseudomorphic HEMT were carried out. The experimental
results show the presence of defect states at the AlGaAs/InGaAs
hetero-interface. A mobility degradation model was developed to explain the low
frequency negative transconductance dispersion as well as the apparent
hole-like peaks observed in the CDLTS spectra. This model incorporates a time
dependent change in 2DEG mobility due to ionised impurity scattering by the
remaining charge states at the adjoining AlGaAs/InGaAs hetero-interface
The influence of acceptor anneal temperature on the performance of InGaN/GaN quantum well light-emitting diodes
Temperature-dependent measurements of the pulsed light-current characteristics of InGaN light-emitting diodes that were thermally annealed at different temperatures have been investigated. A distinct light output, at a fixed current density, with operating temperature arises where the light output increases as the operating temperature is reduced from 300 K, reaches a maximum, and then decreases with subsequent reductions of the operating temperature. We observe that light-emitting diodes thermally annealed at higher temperatures, which is believed to increase the number of electrically activated acceptors in the layers, have a lower light output below 300 K and the maximum light output shifts to higher operating temperatures. Measured absorption and emission spectra show that the thermal anneal process has not affected the structure of the quantum wells within these samples. The light output, for a fixed current density, has been simulated as a function of operating temperature, and we find that by changing the concentration of acceptor atoms, compensating donor atoms, and the hole mobility in the layers, the trends observed experimentally can be reproduced. On the basis of the simulations we find that the distinct behavior of the light output with operating temperature is due to the combination of Shockley-Reed-Hall recombination, at operating temperatures around 300 K, and electron drift leakage, at operating temperature below 300 K, and the increase of the acceptor concentration results in an increased electron drift leakage due to the change of the concomitant hole mobility. The simulations support the view that the experimental observations can be explained through changes of the acceptor concentration in the layers when the thermal anneal temperature is increased
- …