3,365 research outputs found

    Middle atmosphere measurements of small-scale electron density irregularities and ion properties during the MAC/Epsilon campaign

    Get PDF
    Rocket payloads designed to measure small scale electron density irregularities and ion properties in the middle atmosphere were flown with each of the three main salvos of the MAC/Epsilon campaign conducted at the Andoya Rocket Range, Norway, during October to November 1987. Fixed bias, hemispheric nose tip probes measured small scale electron density irregularities, indicative of neutral air turbulence, during the rocket's ascent; and subsequently, parachute-borne Gerdien condensers measured the region's polar electrical conductivity, ion mobility and density. One rocket was launched during daylight (October 15, 1052:20 UT), and the other two launches occurred at night (October 21, 2134 UT: November 12, 0021:40 UT) under moderately disturbed conditions which enhanced the detection and measurement of turbulence structures. A preliminary analysis of the real time data displays indicates the presence of small scale electron density irregularities in the altitude range of 60 to 90 km. Ongoing data reduction will determine turbulence parameters and also the region's electrical properties below 90 km

    History of the Ile d\u27Orleans

    Get PDF
    This English translation of L.P. Turcotte\u27s Histoire de l\u27Ile d\u27Orleans, originally published in French in 1867, will give today\u27s English-speaking descendants of the early French colonists a peek into the lives of the 17th-century settlers of New France. This book focuses on the history of the Ile d\u27Orleans – a small island in the middle of the river just north of Québec City – where many early settlers established their homesteads. Originally published in Québec: Atelier Typographique du Canadien, 21 rue de la Montagne, Basse-Ville, Québec City, 1867 Translated into English by Dr. Elizabeth Blood, Salem State University, Salem, Massachusetts, 2019https://digitalcommons.salemstate.edu/fchc/1000/thumbnail.jp

    Fermi-dirac and random carrier distributions in quantum dot lasers

    Get PDF
    Using experimental gain and emission measurements as functions of temperature, a method is described to characterise the carrier distribution of radiative states in a quantum dot (QD) laser structure in terms of a temperature. This method is independent of the form of the inhomogeneous dot distribution. A thermal distribution at the lattice temperature is found between 200 and 300K. Below 200K the characteristic temperature exceeds the lattice temperature and the distribution becomes random below about 60 K. This enables the temperature range for which Fermi-Dirac statistics are applicable in QD laser threshold calculations to be identified. (C) 2014 AIP Publishing LLC

    Comparison of near-interface traps in Al2_2O3_3/4H-SiC and Al2_2O3_3/SiO2_2/4H-SiC structures

    Full text link
    Aluminum oxide (Al2O3) has been grown by atomic layer deposition on n-type 4H-SiC with and without a thin silicon dioxide (SiO2) intermediate layer. By means of Capacitance Voltage and Thermal Dielectric Relaxation Current measurements, the interface properties have been investigated. Whereas for the samples with an interfacial SiO2 layer the highest near-interface trap density is found at 0.3 eV below the conduction band edge, Ec, the samples with only the Al2O3 dielectric exhibit a nearly trap free region close to Ec. For the Al2O3/SiC interface, the highest trap density appears between 0.4 to 0.6 eV below Ec. The results indicate the possibility for SiC-based MOSFETs with Al2O3 as the gate dielectric layer in future high performance devices.Comment: 3 figures. Applied Physics Letters, accepted for publicatio

    Can we see defects in capacitance measurements of thin-film solar cells?

    Get PDF
    Thermal admittance spectroscopy and capacitance-voltage measurements are well established techniques to study recombination-active deep defect levels and determine the shallow dopant concentration in photovoltaic absorbers. Applied to thin-film solar cells or any device stack consisting of multiple layers, interpretation of these capacitance-based techniques is ambiguous at best. We demonstrate how to assess electrical measurements of thin-film devices and develop a range of criteria that allow to estimate whether deep defects could consistently explain a given capacitance measurement. We show that a broad parameter space, achieved by exploiting bias voltage, time, and illumination as additional experimental parameters in admittance spectroscopy, helps to distinguish between deep defects and capacitive contributions from transport barriers or additional layers in the device stack. On the example of Cu(In,Ga)Se2 thin-film solar cells, we show that slow trap states are indeed present but cannot be resolved in typical admittance spectra. We explain the common N1 signature by the presence of a capacitive barrier layer and show that the shallow net dopant concentration is not distributed uniformly within the depth of the absorber

    Theory of quantum dot spin-lasers

    Full text link
    We formulate a model of a semiconductor Quantum Dot laser with injection of spin-polarized electrons. As compared to higher-dimensionality structures, the Quantum-Dot-based active region is known to improve laser properties, including the spin-related ones. The wetting layer, from which carriers are captured into the active region, acts as an intermediate level that strongly influences the lasing operation. The finite capture rate leads to an increase of lasing thresholds, and to saturation of emitted light at higher injection. In spite of these issues, the advantageous threshold reduction, resulting from spin injection, can be preserved. The "spin-filtering" effect, i.e., circularly polarized emission at even modest spin-polarization of injection, remains present as well. Our rate-equations description allows to obtain analytical results and provides transparent guidance for improvement of spin-lasers.Comment: 7 pages, 3 figure

    Femtosecond pulse generation in passively mode locked InAs quantum dot lasers

    Get PDF
    Optical pulse durations of an InAs two-section passively mode-locked quantum dot laser with a proton bombarded absorber section reduce from 8.4 ps at 250K to 290 fs at 20 K, a factor of 29, with a corresponding increase in optical bandwidth. Rate equation analysis of gain and emission spectra using rate equations suggests this is due to the very low emission rate of carriers to the wetting layer in the low temperature, random population regime which enables dots across the whole inhomogeneous distribution to act as independent oscillators. (C) 2013 AIP Publishing LLC
    • …
    corecore