64 research outputs found

    <i>Ailanthus altissima</i> mapping from multi-temporal very high resolution satellite images

    Get PDF
    This study presents the results of multi-seasonal WorldView-2 (WV-2) satellite images classification for the mapping of Ailanthus altissima (A. altissima), an invasive plant species thriving in a protected grassland area of Southern Italy. The technique used relied on a two-stage hybrid classification process: the first stage applied a knowledge-driven learning scheme to provide a land cover map (LC), including deciduous vegetation and other classes, without the need of reference training data; the second stage exploited a data-driven classification to: (i) discriminate pixels of the invasive species found within the deciduous vegetation layer of the LC map; (ii) determine the most favourable seasons for such recognition. In the second stage, when a traditional Maximum Likelihood classifier was used, the results obtained with multi-temporal July and October WV-2 images, showed an output Overall Accuracy (OA) value of ?91%. To increase such a value, first a low-pass median filtering was used with a resulting OA of 99.2%, then, a Support Vector Machine classifier was applied obtaining the best A. altissima User\u27s Accuracy (UA) and OA values of 82.47% and 97.96%, respectively, without any filtering. When instead of the full multi-spectral bands set some spectral vegetation indices computed from the same months were used the UA and OA values decreased. The findings reported suggest that multi-temporal, very high resolution satellite imagery can be effective for A. altissima mapping, especially when airborne hyperspectral data are unavailable. Since training data are required only in the second stage to discriminate A. altissima from other deciduous plants, the use of the first stage LC mapping as pre-filter can render the hybrid technique proposed cost and time effective. Multi-temporal VHR data and the hybrid system suggested may offer new opportunities for invasive plant monitoring and follow up of management decision

    Knowledge-Based Classification of Grassland Ecosystem Based on Multi-Temporal WorldView-2 Data and FAO-LCCS Taxonomy

    Get PDF
    Grassland ecosystems can provide a variety of services for humans, such as carbon storage, food production, crop pollination and pest regulation. However, grasslands are today one of the most endangered ecosystems due to land use change, agricultural intensification, land abandonment as well as climate change. The present study explores the performance of a knowledge-driven GEOgraphic-Object—based Image Analysis (GEOBIA) learning scheme to classify Very High Resolution(VHR)imagesfornaturalgrasslandecosystemmapping. Theclassificationwasappliedto a Natura 2000 protected area in Southern Italy. The Food and Agricultural Organization Land Cover Classification System (FAO-LCCS) hierarchical scheme was instantiated in the learning phase of the algorithm. Four multi-temporal WorldView-2 (WV-2) images were classified by combining plant phenology and agricultural practices rules with prior-image spectral knowledge. Drawing on this knowledge, spectral bands and entropy features from one single date (Post Peak of Biomass) were firstly used for multiple-scale image segmentation into Small Objects (SO) and Large Objects (LO). Thereafter, SO were labelled by considering spectral and context-sensitive features from the whole multi-seasonal data set available together with ancillary data. Lastly, the labelled SO were overlaid to LO segments and, in turn, the latter were labelled by adopting FAO-LCCS criteria about the SOs presence dominance in each LO. Ground reference samples were used only for validating the SO and LO output maps. The knowledge driven GEOBIA classifier for SO classification obtained an OA value of 97.35% with an error of 0.04. For LO classification the value was 75.09% with an error of 0.70. At SO scale, grasslands ecosystem was classified with 92.6%, 99.9% and 96.1% of User’s, Producer’s Accuracy and F1-score, respectively. The findings reported indicate that the knowledge-driven approach not only can be applied for (semi)natural grasslands ecosystem mapping in vast and not accessible areas but can also reduce the costs of ground truth data acquisition. The approach used may provide different level of details (small and large objects in the scene) but also indicates how to design and validate local conservation policies

    Sentinel-2 Remote Sensed Image Classification with Patchwise Trained ConvNets for Grassland Habitat Discrimination

    Get PDF
    The present study focuses on the use of Convolutional Neural Networks (CNN or ConvNet) to classify a multi-seasonal dataset of Sentinel-2 images to discriminate four grassland habitats in the “Murgia Alta” protected site. To this end, we compared two approaches differing only by the first layer machinery, which, in one case, is instantiated as a fully-connected layer and, in the other case, results in a ConvNet equipped with kernels covering the whole input (wide-kernel ConvNet). A patchwise approach, tessellating training reference data in square patches, was adopted. Besides assessing the effectiveness of ConvNets with patched multispectral data, we analyzed how the information needed for classification spreads to patterns over convex sets of pixels. Our results show that: (a) with an F1-score of around 97% (5 x 5 patch size), ConvNets provides an excellent tool for patch-based pattern recognition with multispectral input data without requiring special feature extraction; (b) the information spreads over the limit of a single pixel: the performance of the network increases until 5 x 5 patch sizes are used and then ConvNet performance starts decreasing

    Object-Based Similarity Assessment Using Land Cover Meta-Language (LCML): Concept, Challenges, and Implementation

    Get PDF
    Land cover (LC) is an essential variable for environmental monitoring in many application domains. The detection of changes in LC can support the understanding of environmental dynamics. However, LC legends present a high degree of inconsistencies that significantly reduce their usability. This study investigates the effectiveness of ISO standard 19144-2, better known as Land Cover Meta-Language (LCML), to improve the standardization and harmonization of different LC taxonomies and maps. LCML vocabulary and syntactic rules facilitate the integration of natural resources information. LC classes are represented by a sequence of "Basic Elements" and attributes defined as "Properties" and "Characteristics." Such elements are formalized in a Unified Modeling Language class diagram. This study presents first, a method to evaluate and score the "similarity" of different LCML legends, second, an application of the similarity assessment criteria to an area located in Bangladesh for translating its specific LCML legend into a different taxonomy, i.e., the System of Environmental Economic Accounting, and third, a Python implementation to be incorporated in new or already existing tools. The results obtained show that when class similarity assessment is carried out by Basic Elements only, the process performs well for simple classes. When classes are characterized by similar basic elements (e.g., biotic elements) structure, the introduction of class properties is needed to disambiguate complex situations. The findings indicate that the proposed methodology can exploit LCML land feature semantic representation. Moreover, it can be used for translating LCML classes into different taxonomies, for facilitating class comparison and change detection

    D2.3 : Proposal of EVs for selected themes

    Get PDF
    Report on the first proposal of EVs for selected themes. It will include description and justification of inclusion. It will collect drafts of SBA-specific EVs for Carbon (CMCC), Health and Pollution (CNR-IIA), Ecosystems (CNRISAC), Biodiversity (CNR- ISSIA), Energy (ARMINES), Disasters (TIWAH) and Oceans (CSIC). It will also include a report on the Co-located Essential Variables Workshop on M7

    Expert knowledge for translating land cover/use maps to General Habitat Categories (GHC)

    Get PDF
    Monitoring biodiversity at the level of habitats and landscape is becoming widespread in Europe and elsewhere as countries establish international and national habitat conservation policies and monitoring systems. Earth Observation (EO) data offers a potential solution to long-term biodiversity monitoring through direct mapping of habitats or by integrating Land Cover/Use (LC/LU) maps with contextual spatial information and in situ data. Therefore, it appears necessary to develop an automatic/semi-automatic translation framework of LC/LU classes to habitat classes, but also challenging due to discrepancies in domain definitions. In the context of the FP7 BIO_SOS (www.biosos.eu) project, the authors demonstrated the feasibility of the Food and Agricultural Organization Land Cover Classification System (LCCS) taxonomy to habitat class translation. They also developed a framework to automatically translate LCCS classes into the recently proposed General Habitat Categories classification system, able to provide an exhaustive typology of habitat types, ranging from natural ecosystems to urban areas around the globe. However discrepancies in terminology, plant height criteria and basic principles between the two mapping domains inducing a number of one-to-many and many-to-many relations were identified, revealing the need of additional ecological expert knowledge to resolve the ambiguities. This paper illustrates how class phenology, class topological arrangement in the landscape, class spectral signature from multi-temporal Very High spatial Resolution (VHR) satellite imagery and plant height measurements can be used to resolve such ambiguities. Concerning plant height, this paper also compares the mapping results obtained by using accurate values extracted from LIght Detection And Ranging (LIDAR) data and by exploiting EO data texture features (i.e. entropy) as a proxy of plant height information, when LIDAR data are not available. An application for two Natura 2000 coastal sites in Southern Italy is discussed
    corecore