7 research outputs found
An Open-Label, Analgesic Efficacy and Safety of Pituitary Radiosurgery for Patients With Opioid-Refractory Pain: Study Protocol for a Randomized Controlled Trial
International audienc
Hypoxia Inhibits Subretinal Inflammation Resolution Thrombospondin-1 Dependently
International audienceHypoxia is potentially one of the essential triggers in the pathogenesis of wet age-related macular degeneration (wetAMD), characterized by choroidal neovascularization (CNV) which is driven by the accumulation of subretinal mononuclear phagocytes (MP) that include monocyte-derived cells. Here we show that systemic hypoxia (10% O2) increased subretinal MP infiltration and inhibited inflammation resolution after laser-induced subretinal injury in vivo. Accordingly, hypoxic (2% O2) human monocytes (Mo) resisted elimination by RPE cells in co-culture. In Mos from hypoxic mice, Thrombospondin 1 mRNA (Thbs1) was most downregulated compared to normoxic animals and hypoxia repressed Thbs-1 expression in human monocytes in vitro. Hypoxic ambient air inhibited MP clearance during the resolution phase of laser-injury in wildtype animals, but had no effect on the exaggerated subretinal MP infiltration observed in normoxic Thbs1â/â-mice. Recombinant Thrombospondin 1 protein (TSP-1) completely reversed the pathogenic effect of hypoxia in Thbs1â/â-mice, and accelerated inflammation resolution and inhibited CNV in wildtype mice. Together, our results demonstrate that systemic hypoxia disturbs TSP-1-dependent subretinal immune suppression and promotes pathogenic subretinal inflammation and can be therapeutically countered by local recombinant TSP-
Mol Ther
Inherited retinal degenerations are blinding diseases characterized by the loss of photoreceptors. Their extreme genetic heterogeneity complicates treatment by gene therapy. This has motivated broader strategies for transplantation of healthy retinal pigmented epithelium to protect photoreceptors independently of the gene causing the disease. The limited clinical benefit for visual function reported up to now is mainly due to dedifferentiation of the transplanted cells that undergo an epithelial-mesenchymal transition. We have studied this mechanism in vitro and revealed the role of the homeogene OTX2 in preventing dedifferentiation through the regulation of target genes. We have overexpressed OTX2 in retinal pigmented epithelial cells before their transplantation in the eye of a model of retinitis pigmentosa carrying a mutation in Mertk, a gene specifically expressed by retinal pigmented epithelial cells. OTX2 increases significantly the protection of photoreceptors as seen by histological and functional analyses. We observed that the beneficial effect of OTX2 is non-cell autonomous, and it is at least partly mediated by unidentified trophic factors. Transplantation of OTX2-genetically modified cells may be medically effective for other retinal diseases involving the retinal pigmented epithelium as age-related macular degeneration
Pathway Analysis Integrating Genome-Wide and Functional Data Identifies PLCG2 as a Candidate Gene for Age-Related Macular Degeneration
PURPOSE. Age-related macular degeneration (AMD) is the worldwide leading cause of blindness among the elderly. Although genome-wide association studies (GWAS) have identified AMD risk variants, their roles in disease etiology are not well-characterized, and they only explain a portion of AMD heritability. METHODS. We performed pathway analyses using summary statistics from the International AMD Genomics Consortium's 2016 GWAS and multiple pathway databases to identify biological pathways wherein genetic association signals for AMD may be aggregating. We determined which genes contributed most to significant pathway signals across the databases. We characterized these genes by constructing protein-protein interaction networks and performing motif analysis. RESULTS. We determined that eight genes (C2, C3, LIPC, MICA, NOTCH4, PLCG2, PPARA, and RAD51B) drive'' the statistical signals observed across pathways curated in the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and Gene Ontology (GO) databases. We further refined our definition of statistical driver gene to identify PLCG2 as a candidate gene for AMD due to its significant gene-level signals (P < 0.0001) across KEGG, Reactome, GO, and NetPath pathways. CONCLUSIONS. We performed pathway analyses on the largest available collection of advanced AMD cases and controls in the world. Eight genes strongly contributed to significant pathways from the three larger databases, and one gene (PLCG2) was central to significant pathways from all four databases. This is, to our knowledge, the first study to identify PLCG2 as a candidate gene for AMD based solely on genetic burden. Our findings reinforce the utility of integrating in silico genetic and biological pathway data to investigate the genetic architecture of AMD
Type 1 Diabetes in People Hospitalized for COVID-19: New Insights From the CORONADO Study
International audienc
The association between macrovascular complications and intensive care admission, invasive mechanical ventilation, and mortality in people with diabetes hospitalized for coronavirus disease-2019 (COVID-19)
International audienceAbstract Background It is not clear whether pre-existing macrovascular complications (ischemic heart disease, stroke or peripheral artery disease) are associated with health outcomes in people with diabetes mellitus hospitalized for COVID-19. Methods We conducted cohort studies of adults with pre-existing diabetes hospitalized for COVID-19 infection in the UK, France, and Spain during the early phase of the pandemic (between March 2020âOctober 2020). Logistic regression models adjusted for demographic factors and other comorbidities were used to determine associations between previous macrovascular disease and relevant clinical outcomes: mortality, intensive care unit (ICU) admission and use of invasive mechanical ventilation (IMV) during the hospitalization. Output from individual logistic regression models for each cohort was combined in a meta-analysis. Results Complete data were available for 4,106 (60.4%) individuals. Of these, 1,652 (40.2%) had any prior macrovascular disease of whom 28.5% of patients died. Mortality was higher for people with compared to those without previous macrovascular disease (37.7% vs 22.4%). The combined crude odds ratio (OR) for previous macrovascular disease and mortality for all four cohorts was 2.12 (95% CI 1.83â2.45 with an I 2 of 60%, reduced after adjustments for age, sex, type of diabetes, hypertension, microvascular disease, ethnicity, and BMI to adjusted OR 1.53 [95% CI 1.29â1.81]) for the three cohorts. Further analysis revealed that ischemic heart disease and cerebrovascular disease were the main contributors of adverse outcomes. However, proportions of people admitted to ICU (adjOR 0.48 [95% CI 0.31â0.75], I 2 60%) and the use of IMV during hospitalization (adjOR 0.52 [95% CI 0.40â0.68], I 2 37%) were significantly lower for people with previous macrovascular disease. Conclusions This large multinational study of people with diabetes mellitus hospitalized for COVID-19 demonstrates that previous macrovascular disease is associated with higher mortality and lower proportions admitted to ICU and treated with IMV during hospitalization suggesting selective admission criteria. Our findings highlight the importance correctly assess the prognosis and intensive monitoring in this high-risk group of patients and emphasize the need to design specific public health programs aimed to prevent SARS-CoV-2 infection in this subgroup