33 research outputs found

    Sex Differences in Sand Lizard Telomere Inheritance: Paternal Epigenetic Effects Increases Telomere Heritability and Offspring Survival

    Get PDF
    To date, the only estimate of the heritability of telomere length in wild populations comes from humans. Thus, there is a need for analysis of natural populations with respect to how telomeres evolve.Here, we show that telomere length is heritable in free-ranging sand lizards, Lacerta agilis. More importantly, heritability estimates analysed within, and contrasted between, the sexes are markedly different; son-sire heritability is much higher relative to daughter-dam heritability. We assess the effect of paternal age on Telomere Length (TL) and show that in this species, paternal age at conception is the best predictor of TL in sons. Neither paternal age per se at blood sampling for telomere screening, nor corresponding age in sons impact TL in sons. Processes maintaining telomere length are also associated with negative fitness effects, most notably by increasing the risk of cancer and show variation across different categories of individuals (e.g. males vs. females). We therefore tested whether TL influences offspring survival in their first year of life. Indeed such effects were present and independent of sex-biased offspring mortality and offspring malformations.TL show differences in sex-specific heritability with implications for differences between the sexes with respect to ongoing telomere selection. Paternal age influences the length of telomeres in sons and longer telomeres enhance offspring survival

    Effects of male telomeres on probability of paternity in sand lizards

    Get PDF
    Standardized swim-up trials are used in in vitro fertilization clinics to select particularly motile spermatozoa in order to increase the probability of a successful fertilization. Such trials demonstrate that sperm with longer telomeres have higher motility and lower levels of DNA damage. Regardless of whether sperm motility, and successful swim-up to fertilization sites, is a direct or correlational effect of telomere length or DNA damage, covariation between telomere length and sperm performance predicts a relationship between telomere length and probability of paternity in sperm competition, a prediction that for ethical reasons cannot be tested on humans. Here, we test this prediction in sand lizards (Lacerta agilis) using experimental data from twice-mated females in a laboratory population, and telomere length in blood from the participating lizards. Female identity influenced paternity (while the mechanism was not identified), while relatively longer male telomeres predicted higher probability of paternity. We discuss potential mechanisms underpinning this result

    Enhanced Training through Interactive Visualization of Training Objectives and Models

    No full text
    Military forces operate in complex and dynamic environments [1] where bad decisions might have fatal consequences. A key ability of the commander, team and individual warfighter is to quickly adapt to novel situations. Live, Virtual and Constructive training environments all provide elements of best practices for this type of training. However, many of the virtual training are designed without thorough consideration of the effectiveness and efficiency of embedded instructional strategies [2], and without considering the cognitive capabilities and limitations of trainees. As highlighted recently by Stacy and Freeman [3], large military training exercises require a significant commitment of resources, and to net a return on that investment, training scenarios for these events should systematically address well-specified training objectives, even if they often, do not. In order to overcome these shortcomings with both Live and Virtual training systems and following our previous work [4,5,6], this paper presents a design solution for a proof-of-concept prototype that visualizes and manages training objectives and performance measures, at individual and collective levels. To illustrate its functionality we use real-world data from Live training exercises. Finally, this paper discusses how to learn from previous training experiences using data mining methods in order to build training models to provide instructional personalized feedback to trainees.NOVA 20140294 (Knowledge Foundation

    Enhanced Training through Interactive Visualization of Training Objectives and Models

    No full text
    Military forces operate in complex and dynamic environments [1] where bad decisions might have fatal consequences. A key ability of the commander, team and individual warfighter is to quickly adapt to novel situations. Live, Virtual and Constructive training environments all provide elements of best practices for this type of training. However, many of the virtual training are designed without thorough consideration of the effectiveness and efficiency of embedded instructional strategies [2], and without considering the cognitive capabilities and limitations of trainees. As highlighted recently by Stacy and Freeman [3], large military training exercises require a significant commitment of resources, and to net a return on that investment, training scenarios for these events should systematically address well-specified training objectives, even if they often, do not. In order to overcome these shortcomings with both Live and Virtual training systems and following our previous work [4,5,6], this paper presents a design solution for a proof-of-concept prototype that visualizes and manages training objectives and performance measures, at individual and collective levels. To illustrate its functionality we use real-world data from Live training exercises. Finally, this paper discusses how to learn from previous training experiences using data mining methods in order to build training models to provide instructional personalized feedback to trainees.NOVA 20140294 (Knowledge Foundation

    Traffic-generated emissions of ultrafine particles from pavement-tire interface

    No full text
    In a road simulator study, a significant source of sub-micrometer fine particles produced by the road-tire interface was observed. Since the particle size distribution and source strength is dependent on the type of tire used, it is likely that these particles largely originate from the tires, and not the road pavement. The particles consisted most likely of mineral oils from the softening filler and fragments of the carbon-reinforcing filler material (soot agglomerates). This identification was based on transmission electron microscopy studies of collected ultrafine wear particles and on-line thermal treatment using a thermodesorber. The mean particle number diameters were between 15-50 nm, similar to those found in light duty vehicle (LDV) tail-pipe exhaust. A simple box model approach was used to estimate emission factors in the size interval 15-700 nm. The emission factors increased with increasing vehicle speed, and varied between 3.7 x 10(11) and 3.2 x 10(12) particles vehicle(-1) km(-1) at speeds of 50 and 70 km h(-1). This corresponds to between 0.1-1% of tail-pipe emissions in real-world emission studies at similar speeds from a fleet of LDV with 95% gasoline and 5% diesel-fueled cars. The emission factors for particles originating from the road-tire interface were, however, similar in magnitude to particle number emission factors from liquefied petroleum gas-powered vehicles derived in test bench studies in Australia 2005. Thus the road-tire interface may be a significant contributor to particle emissions from ultraclean vehicles. (c) 2005 Elsevier Ltd. All rights reserved

    <em>Plasmodium falciparum</em> Rosetting Epitopes Converge in the SD3-Loop of PfEMP1-DBL1α

    Get PDF
    <div><p>The ability of <em>Plasmodium falciparum</em> parasitized RBC (pRBC) to form rosettes with normal RBC is linked to the virulence of the parasite and RBC polymorphisms that weaken rosetting confer protection against severe malaria. The adhesin PfEMP1 mediates the binding and specific antibodies prevent sequestration in the micro-vasculature, as seen in animal models. Here we demonstrate that epitopes targeted by rosette disrupting antibodies converge in the loop of subdomain 3 (SD3) which connects the h6 and h7 α-helices of PfEMP1-DBL1α. Both monoclonal antibodies and polyclonal IgG, that bound to epitopes in the SD3-loop, stained the surface of pRBC, disrupted rosettes and blocked direct binding of recombinant NTS-DBL1α to RBC. Depletion of polyclonal IgG raised to NTS-DBL1α on a SD3 loop-peptide removed the anti-rosetting activity. Immunizations with recombinant subdomain 1 (SD1), subdomain 2 (SD2) or SD3 all generated antibodies reacting with the pRBC-surface but only the sera of animals immunized with SD3 disrupted rosettes. SD3-sequences were found to segregate phylogenetically into two groups (A/B). Group A included rosetting sequences that were associated with two cysteine-residues present in the SD2-domain while group B included those with three or more cysteines. Our results suggest that the SD3 loop of PfEMP1-DBL1α is an important target of anti-rosetting activity, clarifying the molecular basis of the development of variant-specific rosette disrupting antibodies.</p> </div

    Phylogenetic tree of NTS-SD1 and SD3 sequences.

    No full text
    <p>The Neighbor Joining tree shows segregation of the NTS-SD1 (considered from h1 to LARSFADIG) and SD3 (considered from h6 to h7) in two groups. Bootstrap support, after 1000 replicates, is only shown for the branches separating different groups, black dots at nodes indicate bootstrap values above or equal to 50%. 1-cys sequences are colored in dark green, 2-cys in green, 3-cys in pink, 4-cys in blue and 5-cys in yellow.</p

    Importance of the SD3 of PfEMP1-DBL1α in anti-rosetting response. A:

    No full text
    <p>Residual activity of pIgG<sub>IT4var60</sub> after absorption on the SD3-loop peptide of NTS-DBL1α of IT4var60 (KVKDTCQGYNNSGYRIYCS). ELISA plates were coated with 5 µg/ml of peptide and the absorption of the pIgGs was verified by adding 10 µg/ml of the different pIgGs followed by ALP-conjugated secondary antibody. The peptide-absorbed/non-absorbed pIgGs were tested for surface reactivity by flow cytometry at 10 µg/ml and for capacity to disrupt rosettes of the homologous parasite at 250 µg/ml. As control pIgG were absorbed on the same peptide with scrambled sequence (CTSSKDYIYVQGCNNRGYK). All results are shown as relative reactivity as compared to pIgG (set to 100%). Bars show the mean of six independent experiments ± SD. <b>B:</b> pRBC surface reactivity of sera from rats on FCR3S1.2/IT4var60 as detected by an Alexa488-conjugated secondary antibody and visualized by flow cytometry. The rats were immunized with subdomain 1 (SD1; aa 1–119; brown), subdomain 2 (SD2; aa 120–272; light blue) or subdomain 3 (SD3; aa 273–393; dark blue) of IT4var60. Reactivity of a pre-immune rat serum is shown in red. <b>C:</b> Rosette disruption activity of sera of rats immunized as described under A or with full length NTS DBL1α (dilution 1∶5). Presented are the rosetting levels relative to a control incubated with PBS. Six different experiments were performed in duplicate and bars indicate SEM (Standard error of the mean). *** = p<0.001 as compared to pre-immune serum.</p
    corecore